Please use this identifier to cite or link to this item: http://repositorio.ufes.br/handle/10/10540
Title: Síntese, Caracterização e Aplicações de Materiais Reciclados a Partir De baterias Íon-Li Exauridas
metadata.dc.creator: PEGORETTI, V. C. B.
Keywords: Baterias ion-Li;Reciclagem;Materiais multifuncionais
Issue Date: 31-Aug-2018
Publisher: Universidade Federal do Espírito Santo
Citation: PEGORETTI, V. C. B., Síntese, Caracterização e Aplicações de Materiais Reciclados a Partir De baterias Íon-Li Exauridas
Abstract: Neste trabalho, foram realizadas duas rotas hidrometalúrgicas para realizar a reciclagem de baterias de íons Li. Na rota A, o cobalto é recuperado de uma bateria de notebook a partir de um cátodo do tipo LiCoO2. O processo de lixiviação foi realizado utilizando ácido sulfúrico e peróxido de hidrogênio, sob agitação e aquecimento. Após a filtração do lixiviado, o hidróxido de cobalto é precipitado utilizando hidróxido de potássio. Hidróxido de cobalto e carbonato de lítio foram misturados e levados a um forno mufla a 800 °C por 5 h. O produto final foi caracterizado por difração de raios-X (DRX) e espectroscopia Raman com imagem constatando-se que se trata do HT-LiCoO2 (grupo espacial R3 ̅m). O material foi submetido a testes de voltametria cíclica que comprovaram a entrada e saída dos íons Li+ da estrutura do HT-LiCoO2. Teste de carga e descarga galvanostática a uma densidade de corrente de 14 mAg-1 foi aplicada na determinação da capacidade específica do HT-LiCoO2. Obteve-se a capacidade específica de 61,5 mAh g-1 no 4° ciclo para um tempo de descarga de 4,4 h. No 15° ciclo, a capacidade especifica foi de 32,5 mAh g-1 para um tempo de descarga de 2 h com eficiência de carga e descarga de 100%. Imagens de microscopia eletrônica de transmissão (MET) revelaram defeitos estruturais nas partículas do material. O HT-LiCoO2 também foi utilizado como eletrocatalisador em reação de desprendimento de oxigênio, em meio alcalino. Medidas de voltametria cíclica e cronoamperometria demonstram que a evolução de oxigênio inicia em 0,35 V após a formação dos íons Co4+. A energia livre de ativação foi calculada usando curvas de Tafel obtendo-se 28 kJ mol-1. Espectroscopia de impedância eletroquímica elucidaram um circuito equivalente com uma resistência à transferência de carga de 1,55 Ω, impedância Warburg de 150,3 Ω e elementos de fase constante de 3,50 e 1,35 mF dentro dos poros e na dupla camada, respectivamente. Na rota B, utilizou-se uma metodologia de reciclagem verde. Um catodo do tipo LiCoxNiyMn1-x-yO2 foi reciclado a partir de uma bateria de notebook, usando uma solução de ácido málico como agente lixiviante. Foram sintetizados três materiais por meio de uma reação do tipo sol-gel na qual variou-se o tempo de síntese e a quantidade de lítio no meio reacional. O CNM10-10h foi obtido após 10 h de tratamento térmico em forno mufla a 900 °C com uma proporção molar inicial Li:(Co+Ni+Mn) de 1,1:1. Por meio de DRX e refinamento Rietveld foi possível identificar que o material é composto por 35,7 % de Co3O4 (F43 ̅m) e 64,3 % de Li0,31Ni0,5Mn0,5O2 (R3 ̅m). Nas imagens de microscopia eletrônica de varredura visualizaram-se partículas octaédricas de, aproximadamente, 1 µm referentes ao Co3O4.Nas imagens de MET foi possível observar a formação de nanobastões pertencentes à fase litiada. O material apresentou bons resultados como pseudocapacitor uma capacitância específica de 4,6 F g−1 no 1000º ciclo de uma voltametria a 10 mV s−1, e como sensor não enzimático na quantificação de ácido ascórbico com uma sensibilidade de 360,34 µA L mol-1 cm-2 e uma região linear de trabalho no intervalo de 0,55 mmol L−1. Os materiais CNM10-3h e CNM20-3h foram obtidos após tratamento térmico de 3 h em forno mufla e variou-se a proporção Li:(Co+Ni+Mn) sendo 1,1:1 no composto (CNM10-3h) e 1,2:1 no (CNM20-3h) . Análises de DRX com refinamento Rietveld indicaram que a amostra CNM10-3h é composta por 21,8% de Co3O4 (F43 ̅m) e 78,2% de LiCo0,28Ni0,33Mn0,34O2 (R3 ̅m). A amostra CNM20-3h é composta por 14,7 % de Co3O4 (F43 ̅m) e 85,3 % de Li0.94Co0.25Ni0.34Mn0.41O2 (R3 ̅m). Ambos os materiais foram submetidos a testes de voltametria cíclica identificando-se a entrada e saída dos íons Li+ na estrutura do LiCo0,28Ni0,33Mn0,34O2. Teste de carga e descarga galvanostática a uma densidade de corrente de 14 mA.g-1 foram realizados nas amostras CNM10-3h e CNM20-3h e uma capacidade específica no 1º ciclo de 80 mAh g-1 e 119 mAh g-1, respectivamente, foi obtida. Testes prolongados de carga e descarga foram realizados na amostra CNM20-3h para 15 ciclos obtendo uma capacidade de 39,7 mAh g-1 no último ciclo com uma eficiência de carga e descarga de 88,8%. Portanto, as rotas de reciclagem propostas neste trabalho se mostram eficientes para a produção de materiais com diferentes aplicações tecnológicas.
URI: http://repositorio.ufes.br/handle/10/10540
Appears in Collections:PPGQUI - Teses de doutorado

Files in This Item:
File Description SizeFormat 
tese_12733_Vitor Cezar Broetto Pegoretti.pdf5.2 MBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.