Please use this identifier to cite or link to this item: http://repositorio.ufes.br/handle/10/10568
Title: MODELAGEM DA DENSIDADE BÁSICA DA MADEIRA DE EUCALIPTO UTILIZANDO REDES NEURAIS ARTIFICIAIS
metadata.dc.creator: BOA, A. C.
Keywords: Madeira;2;Qualidade;3;Eucalipto;4;Redes neurais (Compu
Issue Date: 31-Aug-2018
Publisher: Universidade Federal do Espírito Santo
Citation: BOA, A. C., MODELAGEM DA DENSIDADE BÁSICA DA MADEIRA DE EUCALIPTO UTILIZANDO REDES NEURAIS ARTIFICIAIS
Abstract: As indústrias brasileiras do setor florestal são destaques mundiais em produtividade e qualidade, e empregam um grande volume de matéria-prima para atender a demanda de seus processos. Além da quantidade, o setor exige materiais que atendam com qualidade seus processos e correspondam com a qualidade requerida de seus produtos finais. Entre as propriedades que caracterizam a madeira, a densidade básica é destacada como um importante parâmetro de qualidade, uma vez que está relacionada a diversos aspectos tecnológicos e econômicos. Deste modo, o objetivo deste trabalho foi aplicar modelagem por redes neurais artificiais na estimativa da densidade básica da madeira de eucalipto destinada à produção de celulose. Foram avaliadas 352 árvores de 18 clones do híbrido Eucalyptus grandis x Eucalyptus urophylla, com idades entre dois e oito anos, originados de plantios nos estados do Espírito Santo e Bahia. As variáveis quantitativas empregadas nas estimativas da densidade foram idade, DAP, volume, precipitação acumulada, temperatura e umidade relativa, adicionadas das variáveis qualitativas clone e região. A densidade da madeira foi estimada por meio de redes neurais artificiais (RNAs) e, para melhor desempenho, estimativas foram realizadas a partir de sete diferentes combinações das variáveis empregadas, sendo elas: COMP (dados completos), REG-1 (Aracruz-ES), REG-2 (São Mateus-ES), REG-3 (Bahia), CLAS-1 (árvores com 2 a 4 anos), CLAS-2 (árvores com 4 a 6 anos) e CLAS-3 (árvores com 6 a 8 anos). Foram também testados os desempenhos das funções de ativação logarítima hiperbólica e tangente hiperbólica e dos algoritmos de treinamento Levenberg-Marquardt e Resilient Propagation (RPROP+) da camada oculta das RNAs. Com base nas configurações da camada oculta, o algoritmo Levenberg-Marquardart apresentou melhor desempenho e tanto a função de ativação logarítmica quanto a hiperbólica apresentaram desempenho satisfatório. De modo geral, as redes neurais artificiais apresentaram bom desempenho na estimativa da densidade básica da madeira de eucalipto, e todas as combinações de variáveis empregadas na estimativa foram eficientes. Contudo, houve tendência de superestimação dos valores estimados. Especificar as regiões e as classes de idade permitiu que fossem alcançados melhores resultados, sendo observados resultados mais precisos na região Aracruz (REG-1) e para árvores com idade variando de quatro a seis anos (CLAS-2).
URI: http://repositorio.ufes.br/handle/10/10568
Appears in Collections:PPGCF - Teses de doutorado

Files in This Item:
File Description SizeFormat 
tese_12440_Tese ANA CAROLINA BOA 2018.pdf1.83 MBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.