Please use this identifier to cite or link to this item: http://repositorio.ufes.br/handle/10/1978
Title: Prognose do diâmetro e da altura de árvores individuais utilizando inteligência artificial
metadata.dc.creator: Vieira, Giovanni Correia
Keywords: Redes neurais artificiais;Sistemas neuro-fuzzy;Manejo florestal;Mensuração florestal;Árvores - Crescimento
Issue Date: 23-Feb-2015
Publisher: Universidade Federal do Espírito Santo
Abstract: Os modelos de árvores individuais são compostos por submodelos que estimam, geralmente, a competição, a mortalidade e o crescimento em diâmetro e altura de cada árvore. São usualmente adotados quando se deseja o melhor detalhamento da informação para estimar multiprodutos da floresta. Nesses modelos, as estimativas do crescimento em diâmetro a 1,30 m do solo (DAP) e a altura total (H) é obtida por meio de análise de regressão. Recentemente, técnicas de inteligência artificial estão sendo utilizadas com bom desempenho na mensuração florestal. Portanto, o objetivo desse trabalho foi avaliar o desempenho de técnicas de inteligência artificial (redes neurais artificiais e sistemas neuro-fuzzy) para estimar o crescimento em DAP e altura de árvores de eucalipto. Utilizou-se dados de inventários florestais contínuos de eucalipto, com medições anuais de DAP, altura total das 15 primeiras árvores da parcela e altura dominante, de acordo com o conceito de Assmann (1970), de 398 parcelas. O banco de dados foi dividido em 70% das parcelas para o treinamento das redes neurais artificiais e do sistema neuro-fuzzy; 15% das parcelas para a validação cruzada; e 15% das parcelas para validação dos sistemas. Com base nos resultados, notou-se que o índice de competição independente da distância 5 – IID5, proposto por Glover; Hool (1979), foi o que teve a maior correlação com as variáveis idade, crescimento em DAP e altura. Observou-se que as técnicas de inteligência artificial apresentaram boa precisão na estimativa do crescimento em DAP e altura total. As duas técnicas abordadas podem ser utilizadas para a prognose do DAP e altura total.
The models are composed of individual trees submodels estimating generally competition, mortality and growth height and diameter of each tree. Are usually adopted when you want the best detailed information to estimate forest multiproducts. In these models, estimates of growth in diameter at 1.30 m above the ground (DBH) and total height (H) is obtained by regression analysis. Recently, artificial intelligence techniques are being used with good performance in forest measurement. Therefore, the aim of this study was to evaluate the performance of artificial intelligence techniques (artificial neural networks and neuro-fuzzy systems) to estimate the growth in DAP and height of eucalyptus trees. We used continuous data eucalyptus forest inventories annually measurements DAP total height of the first 15 trees and dominant height of the portion, according to the concept of Assmann (1970), 398 parts. The database was divided into 70% of the plots for the training of artificial neural networks and neuro-fuzzy system; 15% of the plots for the cross-validation; and 15% of the plots for validating systems. Based on the results, it was noted that the independent competition index of distance 5 - IID5 proposed by Glover; Hool (1979), was the one that had the highest correlation with the age, growth in DAP and height. It was observed that the artificial intelligence techniques showed good accuracy in estimating the growth in DBH and total height. The two techniques discussed can be used for prognosis and overall height of DAP.
URI: http://repositorio.ufes.br/handle/10/1978
Appears in Collections:PPGCF - Dissertações de Mestrado

Files in This Item:
File Description SizeFormat 
Dissertacao Giovanni Correia.pdf2.3 MBAdobe PDFView/Open


This item is licensed under a Creative Commons License Creative Commons