Please use this identifier to cite or link to this item: http://repositorio.ufes.br/handle/10/4217
Title: Metodologia Computacional para Identificação de Sintagmas Nominais da Língua Portuguesa
metadata.dc.creator: MORELLATO, L. V.
Keywords: sintagmas nominais;processamento linguagem natural;recuper
Issue Date: 8-Jan-2010
Publisher: Universidade Federal do Espírito Santo
Citation: MORELLATO, L. V., Metodologia Computacional para Identificação de Sintagmas Nominais da Língua Portuguesa
Abstract: Sintagmas são unidades de sentido e com função sintática dentro de uma frase, [Nicola 2008]. De maneira geral, as frases que compõem qualquer enunciado expressam um conteúdo por meio dos elementos e das combinações desses elementos que a língua proporciona. Dessa forma, vão se formando conjuntos e subconjuntos que funcionam como unidades sintáticas dentro da unidade maior que é a frase -- os sintagmas, que podem ser divididos em: sintagmas nominais e verbais. Dentre esses, os nominais representam maior interesse devido ao maior valor semântico contido. Os sintagmas nominais são utilizados em tarefas de Processamento de Linguagem Natural (PLN), como resolução de correferências (anáforas), construção automática de ontologias, em parses usados em textos médicos para geração de resumos e criação de vocabulário, ou ainda como uma etapa inicial em processos de análise sintática. Em Recuperação de Informação (RI) os sintagmas podem ser aplicados na criação de termos em sistemas de indexação e buscas de documentos, gerando resultados melhores. Esta dissertação propõe uma metodologia computacional para identificação de sintagmas nominais da língua portuguesa em documentos digitais escritos em linguagem natural. Nesse trabalho, é explicitada a metodologia adotada para identificar e extrair sintagmas nominais por meio do desenvolvimento do SISNOP -- Sistema Identificador de Sintagmas Nominais do Português. O SISNOP é um sistema composto por um conjunto de módulos e programas, capaz de interpretar textos irrestritos disponíveis em linguagem natural, através de análises morfológicas e sintáticas, a fim de recuperar sintagmas nominais. Alem disso, são obtidas informações sintáticas, como gênero, número e grau das palavras contidas nos sintagmas extraídos. O SISNOP testou, entre outros corpus, o CETENFolha, composto por mais 24 milhões de palavras, e o CETEMPúblico, com aproximadamente 180 milhões de palavras em português europeu, e muito utilizado em trabalhos da área. Foi obtido 98,12% e 94,59% de frases reconhecidas pelo sistema, obtendo mais de 24 milhões de sintagmas identificados. Os módulos do SISNOP: EM Etiquetador Morfológico, ISN Identificador de Sintagmas Nominais e IGNG Identificador de Gênero, Número e Grau, foram testados de maneira individual utilizando um conjunto de dados menor que o anterior, visto que, a análise dos resultados foi feita manualmente. O módulo identificador de sintagmas obteve precisão de 82,45% e abrangência de 69,20%.
URI: http://repositorio.ufes.br/handle/10/4217
Appears in Collections:PPGI - Dissertações de mestrado

Files in This Item:
File Description SizeFormat 
tese_3340_a13-furia.pdf1.18 MBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.