Please use this identifier to cite or link to this item: http://repositorio.ufes.br/handle/10/6469
Title: Métodos de Projeção Multidimensional
metadata.dc.creator: Col Júnior, Alcebíades Dal
Keywords: Projeção multidimensional;Projection
Issue Date: 10-May-2013
Publisher: Universidade Federal do Espírito Santo
Citation: COL JÚNIOR, Alcebíades Dal. Métodos de Projeção Multidimensional. 2013. 94 f. Dissertação (Mestrado em Matemática) - Universidade Federal do Espírito Santo, Vitória, 2013.
Abstract: O problema que estamos interessados em resolver provém de uma área do conhecimento denominada visualização de dados. Nos nossos estudos, grupos de objetos são analisados para produzir os dados de entrada do nosso problema, cada um dos objetos é representado por atributos, temos assim uma lista de atributos para cada objeto. A ideia é representar, através dessas listas de atributos, os objetos através de pontos em R2 para que possamos realizar um estudo do grupo de objetos. Como dissemos cada objeto é representado por uma lista de atributos, esta pode ser interpretada como um ponto de um espaço multidimensional. Por exemplo, se são considerados m atributos valorados para todos os objetos podemos interpretá-los como sendo pontos de um espaço de imensão m, ou m dimensional. Mas, queremos produzir uma visualização dos dados na tela do computador através de pontos em R2, realiza-se então um processo conhecido como projeção multidimensional, que é a obtenção de pontos em um espaço de baixa dimensão que represente pontos de um espaço de alta dimensão preservando relações de vizinhaça tanto quanto possível. Diversos métodos de projeção multidimensional são encontrados na literatura. Neste trabalho, estudamos e implementamos os métodos NNP, Force, LSP, PLP e LAMP. Estes métodos abordam o problema de diferentes formas: geometricamente; sistemas lineares, em particular, sistemas laplacianos; e mapeamentos ortogonais afins. As listas de atributos associadas aos grupos de objetos recebem o nome de conjuntos de dados. Dois dos conjuntos de dados abordados neste trabalho apresentam tendências de agrupamento conhecidas a priori, portanto foram utilizados para dar credibilidade as nossas implementações dos métodos. Outros dois conjuntos de dados são estudados e esses não eram dotados de tal característica, os métodos de projeção multidimensional são então utilizados para definir tendências de agrupamento para esses dois conjuntos de dados OBS: Os Gráficos de dispersão das projeções dos conjuntos de dados Iris, Wine, Housing (de cima para baixo) através dos métodos NNP, Force, LSP, PLP e LAMP (da esquerda para a direita) não foram anexados por terem mais de 2 KB, excedendo o limite do site.
The problem we are interested in solving comes from a area of knowledge called data visualization. In our studies, groups of objects are analyzed to produce the input data of our problem, each object is represented by attributes, have so a list of attributes for each object. The idea is to represent, through these lists of attributes, objects through points in R2 so that we can conduct a group of objects. As we said each object is represented by a list of attributes, this may be interpreted as a point of a multidimensional space. For example, if they are considered m valued attributes for all objects can interpret them as points in a space of dimension m, or m-dimensional. But we want to produce a visualization of the data on the computer screen through points in R2, it was then performs a process known as multidimensional projection, that is obtaining points in a low dimensional space representing points in a high dimensional space preserving neighborhood relations as much as possible. Various methods of multidimensional projection are found in the literature. In this work, study and implement methods NNP, Force, LSP, PLP and LAMP. These methods deal with the problem in different ways: geometrically; linear systems, in particular, laplacian systems; and mappings related orthogonal. The lists of attributes associated with the groups of objects are called dataset. Two sets of data in this paper present trends grouping known a priori, therefore were used to give credibility to our implementations of the methods. Two other data set are studied and these were not provided with such feature, the methods of multidimensional projection are then used to define trends grouping for these two data sets
URI: http://repositorio.ufes.br/handle/10/6469
Appears in Collections:PPGMAT - Dissertações de mestrado

Files in This Item:
File Description SizeFormat 
Alcebiades Dal Col Junior - Parte 01.pdf9.17 MBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.