
LEANDRO COSTALONGA

VOLUME 38

Biomechanical modelling
of guitar performance

Esta obra foi selecionada para integrar a “Coleção Pesquisa Ufes”,
a partir de Chamada Pública feita pela Pró-Reitoria de

Pesquisa e Pós-Graduação (PRPPG) da Universidade Federal
do Espírito Santo (Ufes) aos programas de pós-graduação

da universidade.

A seleção teve por base pareceres que consideraram critérios de
inovação, relevância e impacto.

O financiamento da Coleção foi viabilizado por meio do
Programa de Apoio à Pós-Graduação (Proap) da Coordenação
de Aperfeiçoamento de Pessoal de Nível Superior (Capes) e de

recursos do Tesouro Nacional.

Editora Universitária – Edufes

Filiada à Associação Brasileira
das Editoras Universitárias (Abeu)

Av. Fernando Ferrari, 514
Campus de Goiabeiras
Vitória – ES · Brasil

CEP 29075-910

+55 (27) 4009-7852
edufes@ufes.br

www.edufes.ufes.br

Reitor
Paulo Sergio de Paula Vargas

Vice-reitor
Roney Pignaton da Silva

Pró-reitor de Pesquisa e Pós-Graduação
Valdemar Lacerda Júnior

Chefe de Gabinete
Aureo Banhos dos Santos

Diretor da Edufes
Wilberth Salgueiro

Conselho Editorial
Ananias Francisco Dias Junior, Eliana Zandonade,
Eneida Maria Souza Mendonça, Fabrícia Benda
de Oliveira, Fátima Maria Silva, Gleice Pereira,
Graziela Baptista Vidaurre, José André Lourenço,
Marcelo Eduardo Vieira Segatto, Margarete Sacht
Góes, Rogério Borges de Oliveira, Rosana Suemi
Tokumaru, Sandra Soares Della Fonte

Secretaria do Conselho Editorial
Douglas Salomão

Administrativo
Josias Bravim, Washington Romão dos Santos

Seção de Edição e Revisão de Textos
Fernanda Scopel, George Vianna,
Jussara Rodrigues, Roberta Estefânia Soares

Seção de Design
Ana Elisa Poubel, Juliana Braga,
Samira Bolonha Gomes, Willi Piske Jr.

Seção de Livraria e Comercialização
Adriani Raimondi, Ana Paula de Souza Rubim,
Dominique Piazzarollo, Marcos de Alarcão,
Maria Augusta Postinghel

Este trabalho atende às determinações do Repositório Institucional do Sistema
Integrado de Bibliotecas da Ufes e está licenciado sob a Licença Creative Commons
Atribuição-NãoComercial-SemDerivações 4.0 Internacional.

Para ver uma cópia desta licença, visite http://creativecommons.org/licenses/by-nc-nd/4.0/.

Diretor da Graúna Digital
Thiago Moulin

Supervisão
Laura Bombonato

Seção de edição e revisão de textos
Carla Mello | Natália Mendes
Manuella Marquetti | José Ramos | Stephanie Lima

Seção de design
Carla Mello | Bruno Ferreira Nascimento

Projeto gráfico
Edufes

Diagramação e capa
Bruno Ferreira Nascimento

Revisão de texto
MC&G Editorial

Fotografia da capa por
Jeremiah Higgins em
https://unsplash.com/.

Esta obra foi composta com
a família tipográfica Crimson Text.

Dados Internacionais de Catalogação-na-publicação (CIP)
(Biblioteca Central da Universidade Federal do Espírito Santo, ES, Brasil)

Costalonga, Leandro.
C837b Biomechanical modelling of guitar performance [recursos

eletrônicos] / Leandro Costalonga. - Dados eletrônicos - Vitória,
ES : EDUFES, 2023.

305 p. : il. ; 21 cm. - (Coleção Pesquisa Ufes ; 38)

Inclui bibliografia.
ISBN: 978-85-7772-528-1
Modo de acesso: https://repositorio.ufes.br/handle/10/774

1. Música e tecnologia. 2. Biomecânica. 3. Violão. I.
Costalonga, Leandro. II. Título. III. Série.

CDU:789.9

Elaborado por Ana Paula de Souza Rubim – CRB-6 ES-000998/O

http://creativecommons.org/licenses/by-nc-nd/4.0/
https://unsplash.com/

LEANDRO COSTALONGA

Biomechanical
modelling of guitar
performance

Vitória, 2023

This book was selected to be part of the PRPPG books ‘collections
“Coleção Pesquisa Ufes”, funded by the PROAP program with

resources from the Brazilian national treasure.

(EN) This book will be made available free of charge at the Institutional
Repository of the Integrated Library System at Ufes and will be
licensed under the Creative Commons Attribution License - non-
commercial - without 4.0 International derivations. The reproduction
of images in this work has a pedagogical and scientific character,
supported by the limits of copyright, according to Brazilian Law No.
9,610 / 1998, art. 46, III (quotation in books, newspapers, magazines
or any other means of communication, of passages of any work, for
the purposes of study, criticism or controversy, to the extent justified
for the purpose to be achieved, indicating the name of the author and
the origin of the work). All reproduction was carried out under the

legal protection of the general copyright regime in Brazil.

(PT) Esse livro será disponibilizado gratuitamente no Repositório
Institucional do Sistema Integrado de Bibliotecas da Ufes e será
licenciado sob a Licença Creative Commons Atribuição – não
comercial – sem derivações 4.0 Internacional. A reprodução de
imagens nesta obra tem caráter pedagógico e científico, amparada
pelos limites do direito de autor, de acordo com a lei no 9.610/1998,
art. 46, III (citação em livros, jornais, revistas ou qualquer outro
meio de comunicação, de passagens de qualquer obra, para fins
de estudo, crítica ou polêmica, na medida justificada para o fim a
atingir, indicando-se o nome do autor e a origem da obra). Toda
reprodução foi realizada com amparo legal do regime geral de direito

de autor no Brasil.

Acknowledgments

To my wife, my parents, my children, and my friends. A loving
thanks for all the support you give me. Also, a special thanks to all

fellow researchers of ICCMR, G-ubimus and NESCoM.
This book originates from a PhD thesis entitled “Biomechanical
Modelling of Musical Performance: A Case Study of the Guitar

(2009)” written by the same author and supersized by Prof.
Eduardo Reck Miranda and Dr. John Matthias at the University of
Plymouth (UK). The original research was funded by the Brazilian

Government’s “Fundação Coordenação de Aperfeiçoamento de
Pessoal de Nível Superior” (CAPES).

About the Author

Leandro Costalonga has a Computer Science Degree with Masters
(UFRGS/Brazil) and PhD (University of Plymouth/UK) in

Computer Music. Associate professor at the Federal University
of Espírito Santo (UFES/Brazil) where teaches on undergraduate

programs in Computer Science and Computer Engineering and
Graduate Program in Arts. Head of the NESCoM Research Group

that carries on Computer Music related research, especially on
Ubiquitous Music. Besides Computer Music, other research

interest includes Human-Computer Interaction, Programming
Languages and Artificial Intelligence

Preface

As early as the 1840s, mathematician and allegedly the first ever soft-
ware programmer, Lady Ada Lovelace, predicted in that machines
would be able to compose music. On a note about Charles Babba-
ge’s Analytical Engine, she wrote:

“Supposing, for instance, that the fundamental relations of pit-
ched sounds in the science of harmony and of musical composi-
tion were susceptible of such expression and adaptations, the Engine
might compose elaborate and scientific pieces of music of any degree
of complexity or extent.” (Manabrea 1843, p.21)

People hardly ever realize that musicians started experimen-
ting with computing far before the emergence of the vast majo-
rity of scientific, industrial and commercial computing applications
in existence today. For instance, in the 1940s, researchers at Aus-
tralia’s Council for Scientific and Industrial Research (CSIR) instal-
led a loudspeaker on their Mk1 computer to track the progress of
a program using sound. Subsequently, Geoff Hill, a mathematician
with a musical background, programmed this machine to playback
a tune in 1951.

That is not yet programming a computer to compose algori-
thmically. It is rather coding a piece of music for playback, as if the
machine was the equivalent of one of those mechanical pianolas often
spotted in saloons of Western films. Nevertheless, I would say this
is when the field of computer music began.

For the last 70 years or so the field flourished at rapid speed.
Today, it is impossible to think of any aspect of music making, distri-
bution and listening that would not involve some form of computing
technology or Artificial Intelligence (AI). And like it or not, compu-
ters furnished with AI can compose music automatically nowadays.

The music that those AI systems produce are very good. They
may not always fulfil everyone’s expectations and tastes, but machi-
nes have been capable of producing music for film, advertising and

even classical orchestral music that conned audiences to think they
were composed by a human being.

One aspect of music that computers cannot still imitate humans
well is performance. An artificially composed piece of music for,
say, the guitar, sounds good when performed by a human guitarist.
Give it to a computer to play and one can almost immediately tell
it is artificial.

Programming a machine to imitate the way humans perform
music is very difficult. Research in this area is relatively incipient.
In this book, Leandro presents an approach to for doing this, which
is a promising way forward.

The book presents a study on capturing, analyzing and model-
ling information about motor and biomechanical processes of gui-
tar performance. Leandro believes that actions originated from
the motor and biomechanical functions during a musical perfor-
mance can provide important information for training an Artifi-
cial Intelligence system to perform music as expressively as a human
being would do.

The bulk of this work emerged from the research which Leandro
developed for his doctorate at the Interdisciplinary Centre for Com-
puter Music Research of University of Plymouth, in the United King-
dom. I was most honoured to be his thesis supervisor. And I am very
proud to see his research published as a book, which will certainly
constitute an important reference for those interested in taking for-
ward the fiendish task of modelling expressive musical performance.

Prof Eduardo Miranda
15 December 2020

Manabrea, L. F. (1843). Sketch of the Analytical Engine invented by
Charles Babbage. Translated by Ada Lovelace. London, UK: R. & J.
E. Taylor. Available online: https://johnrhudson.me.uk/computing/
Menabrea_Sketch.pdf. Accessed on 03 Apr 2020.

https://johnrhudson.me.uk/computing/Menabrea_Sketch.pdf
https://johnrhudson.me.uk/computing/Menabrea_Sketch.pdf

Contents

Chapter 1
Introduction ..17
Why should we discuss biomechanics in guitar performance modelling?.....23
How is this book organized? .. 25

Chapter 2
Approaches to Modelling Music Performance:
A Literature Review.. 27
Expressive Music Performance (EMP) ... 29
Simulation-Based Modelling (First Approach) ...31

Rule-Based approach ..31
Mathematical Approach ...33
Machine Learning Approach .. 34

Behavioural-Based Modelling (Second Approach) 35
Musical Structure .. 36
Perceptual Modelling ..37
Kinematic Models .. 38
Internal Time-keeping System (Motor Control) 40
Biomechanical Models ..41

Ergonomic Model for Piano Fingering ..42
On the Complexity of Classical Guitar ..43

The Role of Errors in a Music Performance ... 45
Cognitive Errors (Mistakes) .. 46
Human Factor Engineering, Ergonomics, and Biomechanics
Errors (Slips) .. 49

Sounding Realistic ... 50
Summary ... 54

Chapter 3
The Multiple Aspects of Guitar Performance 56
The Mechanics of the Guitar ... 56

Guitar Characteristics .. 57
The Fretboard... 59
Body Style and Size ...61
String Action .. 63
String Gauge and Tension ... 63
Guitar Noises .. 67

The Body Behind a (skilled) Music Performance ... 76
An Overview of Skilled Tasks ... 77
The Biomechanics of the Classical Guitar ... 79

The Right Arm and the Plucking Hand ... 81
The Left Arm and the Fretting Hand ...84

The Physiology of Guitar Performance .. 88
Muscle Strength (Force) ...88
Endurance and Fatigue ..93
Speed ...95

Other Factors that Impact Musical Performances 98
Summary ... 99

Chapter 4
Guitar Performance Data Acquisition and Analysis 101
Shared protocol for both experiments ...104
Experiment 1: Speed and Precision ..106

Measuring System ...109
Task .. 112
Data Analysis ... 113
Results .. 116

Experiment 2: Force and Posture ...129
Measuring System ...132
Tasks ...138
Data Analysis ...139

FoGu Data ..139
Gypsy6 Skeleton .. 140

Results ..142
Force .. 142
Positioning ... 152

Summary ..158

Chapter 5
Guitar Performance Modelling ...160
Octopus Music API (Application Programming Interface)163

Octopus Project Design ..166
Musical Data Structures ..168

Class octopus.Note.. 169
Class octopus.Chord ... 170
Class octopus.Bar ..171
Class octopus.RhythmPattern .. 173
Class octopus.Arpeggio ... 175
Class octopus.Scale ... 176
Class octopus.HarmonicProgression.. 177
Class octopus.Melody ... 177
Class octopus.Harmony .. 178
Class octopus.Music .. 179

Musical Data Interpreters ..182
Class octopus.Musician .. 184
Class octopus.instument.Performer ... 184
Class octopus.instument.fretted.Guitarist ... 185

Instrument Classes ..190
Class octopus.instument.Instrument ..191
Class octopus.instument.string.fretted.FrettedInstrument 192

Communication Classes ..192
Class octopus.communication.MusicalEvent .. 195
Class octopus.communication.MusicalEventSequence 196
Class octopus.communication.SynthesizerController 196

Machine Leaning (ML) ...197
Learning Strategy - Which Learning Algorithm Use?199
Machine Learning Algorithms .. 202
A Note on Data Preparation ...213
Modelling Chord Speed ..214
Speed Results .. 224
Modelling Force and Posture Data .. 227

Force Results ..236
Modelling Precision Data .. 238

Algorithm Description ... 241
Equipping the Octopus API with Biomechanical-inspired models 247

Class octopus.idiomatic.IdiomaticGuitar ..248
Class octopus.idiomatic.IdiomaticGuitarist ..251

Overall Results and Final Considerations ... 260
Summary ... 263

Chapter 6
Conclusion ... 265
Contributions to Knowledge ... 270

Answers to the Motivation Questions ..271
Do unintentional actions originating from the motor and biomechanical
functions during musical performances contribute to the ‘human feel’ found in
the performance? ... 271
Would it be possible to determine and quantify what such unintentional
actions are? .. 271
Would it be possible to model and embed such information in computer
systems for music performance? ...272

Approach to the book’s overreaching goals ... 272
Understand gaining of the guitar mechanics, ergonomics, and playability. .272
The understanding gained of how the human body conforms to physical
actions in a musical performance. ...273
Development of a methodology to formalise quantifiable data about physical
performing actions found in guitar performance. ..273

An approach to model the biomechanical data. ...274
Demonstration of how the proposed modelling approach can be embedded in a
computer system for music performance ..274

Final thoughts on the future of the field .. 275
Bibliography ... 277
Index ..301

17

Chapter 1

Introduction

The world always makes the assumption that the exposure of an
error is identical with the discovery of truth - that the error and
truth are simply opposite. They are nothing of the sort. What
the world turns to, when it is cured on one error, is usually simply
another error, and maybe one worse than the first one. (Henry
Louis “H. L.” Mencken, 1949)

As early as the 1950s musicians started to gain access to computers
to generate music. Pioneers include composers such as Lejaren Hil-
ler, Gottfried Michael Koenig, Iannis Xenakis and Pietro Grossi,
amongst others. The term algorithmic composition has become a
synonym for music composed by a computer.

Composers working with algorithmic composition soon rea-
lised that performance information (for example, speeding up and
slowing down while playing notes, and changing how loudly they
are played) is very important in the creation of music by computers.
Indeed, the first attempt at a computer music programming language,
Music I, developed by Max Mathews at Bell Telephone Laborato-
ries in 1957, was prompted by Mathew’s wish to “write a program to

18

perform music on the computer” (Park, 2009, p.10). Apparently, this
development began after Mathews and his boss, John Pierce, went to
a piano concert together. One of the pieces was so badly performed
that during the intermission Pierce suggested that perhaps a com-
puter could do better. And Mathews accepted the challenge, a chal-
lenge which remains pertinent in computer music research today.

On the 22nd of November 2003, the 10th episode of the seventh
and final season of Star Trek, a famous American science-fiction
entertainment series written by Eugene Wesley “Gene” Roddenberry
in 1966 and adapted to television by Dan Koeppel, was broadcast. In
this episode, an android known as Lt. Cmdr. Data (played by Brent
Spiner) was playing the Handel’s Suite #7 in G Minor on the violin
to “his” creator: Dr. Tainer (played by Fionnula Flanagan). The fol-
lowing dialog took place after the performance finished:

Dr. Tainer delightedly laughs and cheers Data, clapping enthusiastically.
“Thank you”, said Data, “I’ll be playing this piece at a recital
tomorrow evening”
“That was beautiful”, said Dr. Tainer with an emotional voice.
Data replied with a surprised face, “Hmm…I’ve been told that
my playing is technically flawless but no one ever described
it as beautiful”.
Dr. Trainer reassures Data, “It was…really!”
“Are you certain you not saying that because you are my mother?”
Data asks still not entirely convinced.
Dr. Tainer laughs while Data continues, “I have noticed that
parents tend to exaggerate when it comes to their children’s
accomplishments.”
“Well…I suppose there is a certain amount of vanity involved
considering that giving you a creative aspect was my idea”, Dr.
Tainer proudly says.
Data seems confused but she rapidly clarifies, “Your father did
not really see the point. He believed that, since you don’t have

19

emotions, there will be no use for you to really express yourself”,
she pauses, looks into Data’s eyes, and continues “somehow I had
the feeling the opposite would be true”.
Data nudges in agreement, declaring “I do not know for certain
but I believe it is during my creative endeavours that I come clo-
sest to experiencing what it must be like to be human”
The dialogue finishes with Dr. Tainer offering to perform a duet
with Data on the recital of the following day and Data accepting.
As a result, they start to rehearse.

The story continues with the duet presentation at the recital,
which has left the audience astonished. Data, however, seemed to
be suspicious about the way Dr. Tainer was performing the violin.
Data’s suspicion was only explained after Dr. Tainer was left uncons-
cious by accident.

During the medical procedures that attempt to revive Dr. Tai-
ner, the medical crew noticed that despite the vital signals appear
to be absolutely normal, there was something not right. It was only
then that Data suggested that Dr. Tainer was also an android, which
was confirmed after her skull was opened.

Surprised, Cmdr. William T. Riker (played by Jonathan Frakes)
questioned Data about how he knew she was an android. The answer
Data gave resonates with most of the current research in the field of
expressive music performance modelling. He said:

[...] we’ve practised the piece and I’ve noticed she played the same
way during the performance. Every pitch, every intonation was
exactly the same. Only an artificial life form could have done that.

Performers do have an impressive ability to replicate the expres-
sive profile of a piece in performance, with a degree of variability in
the timing properties of a performance of one per cent or less (Clarke,
1993). However, as demonstrated by Palmer (1997), performers

http://www.tv.com/jonathan-frakes/person/14206/summary.html?tag=overview;cast;star;4

20

cannot control all the variations in the performance, even when
they try to play with no “expression” whatsoever.

Measuring the deviation of the musical performance from what
is actually written on the score is the most common technique to
quantify the “expressiveness” of the performance (Sundberg et al.,
1983a; Sundberg et al., 1983b) but according to Parncutt (1997),
expressive variation is more than just a deviation from, or a distor-
tion of, the original (notated) piece of music.

The personal motivation behind this research ultimately con-
tributes to the development of technology which is capable of artifi-
cially performing music as a human would, in special guitarists. Such
a technology could be used by composers to predict how their com-
positions would sound when played by a particular guitarist without
having to hire them. In an attempt to gain an initial practical unders-
tanding of the properties of a music performance produced by a
human performer, we have developed a simple listening experiment
aimed at assessing whether listeners could differentiate computer-
-generated from human played guitar performances.

Simple harmonic sequences of thirty-second’s duration were
produced by five distinct sources: three computer software (namely,
Guitar Pro, Finale and Polvo), a professional guitarist, and an ama-
teur guitarist. Even the samples produced by the human guitarist
were generated by a digital sampler controlled by a MIDI guitar.
That way, the listener would not be able to make any decision on
the basis of acoustical properties. In total, thirty samples were pro-
duced, six per source.

Twenty-five subjects took part in the experiment, fourteen of
them self-professed musicians. A random choice of ten samples was
presented to the subjects, two samples from each source.

The results have shown that 70.4% of the time listeners could
determine whether a performance was generated by a computer or
played by a human. Unlike Lt. Cmdr. Data, the android from Star
Trek, the listeners did not have any previous information regarding

21

the way the sources produced the performance nor access to a musi-
cal score. So, how did they do it?

This question was put directly to the subjects, but instead of
offering a precise answer they generally reported that their deci-
sions were made based on “the way the notes flow” or “how fami-
liar it sounds”. This rather vague type of answer is not very helpful
at first. However, after analysing the results an interesting point can
be noticed: not only could the listener distinguish human from com-
puter-generated performances, but they could also distinguish the
amateur guitarist more easily, as shown in Figure 1.

Figure 1: Results of a preliminary listening experiment.

Source: Own image.

The x-coordinates show the percentage of the subject’s correct
classification per source (y-coordinates).

Figure 1 shows the percentage of the correct classification of the
performer. Guitar Pro and Finale are commercial systems that requi-
red human expertise to generate the samples in a way that sounds
natural. Polvo is a system of our own design, which is a precursor

22

of the Octopus Music API introduced in Chapter 5. Polvo does not
require human intervention; it generates the samples autonomou-
sly. As we can see, the samples that subjects found harder to identify
were programmed using a Guitar Pro, which is a software purpo-
sely built to formalise guitar performance. As previously said the
samples that the subjects found easier to identify were generated by
the amateur guitarist; they were positively identified by the liste-
ners 88% of the time.

Compared with the performance recorded from the professional
guitarist, the amateur produced a “dirtier” performance. The notes
were overlapping each other, missing, or played out of time. Could
the little imperfections commonly found in music performance con-
tribute to the so-called “human-feel” in computer-generated music?

Poepel (2005) states that deviations communicate the perfor-
mer’s expressive intentions and emotions. However, the amount of
deviations that are actually intentional is not clear. In fact, by just
measuring the deviations it is not possible to distinguish between
intentional and unintentional actions because they are the result of
mixed cognitive and motor processes.

The cognitive aspects of musical performance have been widely
studied by psychologists, musicologists, and even computer scien-
tists, who have been using computer-modelling techniques to support
cognitive theories. On the other hand, the motor and biomechani-
cal aspects have not received much attention in such studies. In fact,
only a few researchers actually study how the performer executes cer-
tain actions in an instrument with the intention of modelling them
(Meister, 1989), therefore this will be our focus.

This book makes a contribution to the area of motor and bio-
mechanical modelling of a musical performance focusing mainly on
technical errors. However, we do acknowledge the importance of the
cognitive models that focus on intentional variations during a musi-
cal performance with expressional purpose. Here, we are not stating
that one approach should be preferred over the other; we are of the

23

opinion that biomechanical models (unintentional variations) are
complementary to cognitive models (intentional variation). For ins-
tance, biomechanics can be seen as a “filter” that shapes the actions
planned at the cognitive level. That is, the human body is viewed as
some form of “bottleneck” based on the laws of (bio)physics which
constrains the abstract and culturally specific principles of compo-
sition and performance (Clarke, 1993).

WHY SHOULD WE DISCUSS BIOMECHANICS IN GUITAR
PERFORMANCE MODELLING?

The overarching questions that motivate our research are:
1. Do unintentional actions originating from the motor and

biomechanical functions during music performance contri-
bute a “human feel” to the performance?

2. Would it be possible to determine and quantify what such
unintentional actions are?

3. Would it be possible to model and embed such information
in computer systems for music performance?

The methodology to address these questions is comprised
of the following:

1. Research into the mechanics, ergonomics, and playability of
a given musical instrument. The focus is to understand the
physical actions that must be performed in order to produce
sounds, rather than focusing on the acoustical properties of
the produced sound.

2. Once the actions (techniques) required for producing such
sounds are understood, then the next step is to study how the
human body conforms to these actions from a strictly motor
and biomechanical viewpoint. The movements, postures, and
the effort to perform are central to this investigation

3. Research into formalisation and modelling of motor and
biomechanical performance information. The performance

24

actions can only be simulated by computer if they can be
formalised in computational terms. This formalisation must
include not only descriptors for musical actions but also cover
mechanical aspects of the musical instrument and the human
body when performing music.

The instrument chosen for this research is the guitar. There are
good reasons for this choice: guitars are popular, mechanically sim-
ple, and inexpensive instruments that have been taught not only by
the classical school but also in a less formal education, which led to
different playing styles, techniques, and simplified musical notations
that allow the guitarist to perform more freely (i.e. tablature). Des-
pite these advantages, the guitar has seldom been chosen for research
into computer models of music performance. Rather, instruments
such as the piano, trumpet, sax, flute, violin and even drums have
been preferred over the guitar (Bilitski, 2005; Dahl, 2006; Madsen
and Widmer, 2006). By choosing the guitar we are certainly making
a significant contribution to the field.

From the motor and biomechanical perspective, the guitar does
not rank between the most studied human activities either. In the
light of that, we decided to investigate, some of the attributes that we
believe can influence the quality of a guitar performance are: force,
speed, and precision of the digits of the left-hand (fretting hand). The
biomechanical study of all aspects of the guitar performance, which
would include the right-hand and the synchronization between the
hands, is rather outside the scope of this book at this stage, given that
there is almost no literature on the subject currently in existence.

Therefore, the objectives of this book are:
1. Gain a better understanding of the mechanics, ergonomics,

and playability of the guitar, focusing on the physical actions
that must be performed in order to play the guitar, rather
than focusing on the acoustical properties of the sounds pro-
duced by this instrument.

25

2. Gain a better understanding of how the human body con-
forms to such physical performing actions (e.g. movements,
postures, and the effort) from the motor and biomechani-
cal viewpoint. In this research, we have focused on classical
guitar techniques using the work of Abel Carlevaro (1984)
as our main reference.

3. Develop a methodology to formalise quantifiable (i.e.,
acquire and analyse) data about the aforementioned physi-
cal performing actions on the guitar. In this book, the propo-
sed methodology will be limited to the guitarist’s left-hand.

4. Develop an approach to modelling the information formali-
zed above, suitable for embedding such information in com-
puter systems for music performance.

5. Demonstrate how the proposed modelling approach
can effectively be embedded in computer systems for
music performance.

HOW IS THIS BOOK ORGANIZED?

This book is dived into five main chapters, in addition to
this introduction.

“Chapter 2 Approaches to Modelling Music Performance: A
Literature Review” presents the background to the field of music per-
formance modelling. It discusses expressive music performance and
the two main approaches to modelling them: a) the simulation-based
approach that just attempts to find patterns of deviations from the
score; and b) the behavioural-based approach that can also be used
to model music performance but focuses on the cognitive side. In
Chapter 2, we also briefly discuss the role of errors in musical per-
formance and how to produce computer-generated performances
that “sound” realistic.

“Chapter 3 The Multiple Aspects of Guitar Performance” focuses
on objectives 1 and 2. It explores the two main elements in a guitar

26

music performance: the guitar and the guitarist. The guitar is des-
cribed in terms of its mechanical and playable properties; Like-wise,
the performer is also analysed through a biomechanical and physio-
logical view of the playing techniques taught by the classical guitar
school. Other factors that could potentially interfere in musical per-
formance are also mentioned.

“Chapter 4 Guitar Performance Data Acquisition and Analysis”
focuses on objective 3. It describes the methodology used to capture
and compile the data on a guitarist’s left hand. Two experiments are
reported: a) Speed and Precision; and b) Force and Posture. Since
there is no commercial equipment suitable to measure force in guitar
performance, we had to build our own device. Besides, a substantial
amount of software development was necessary to process the data.
Chapter 4 also reveals some interesting preliminary results that rein-
force the idea that motor and biomechanical constraints do indeed
play a role in the quality of musical performance.

“Chapter 5 Guitar Performance Modelling” focuses on objecti-
ves 4 and 5. This chapter is divided into two main sections. The first
section addresses a Java Application Programming Interface (API),
named Octopus Music API, which was designed to model music
performance. The main classes of the API are presented with code
examples to illustrate its use. In the second section, Machine Lear-
ning algorithms are discussed, proposed, and evaluated in the task
of predicting the speed, force and precision of guitarists when per-
forming guitar chords. There is still a third and fourth section that
shows how the biomechanical-inspired models can be integrated
with the Octopus Music API followed by an overall reflection over
the solution proposed.

Finally, “Chapter 6 Conclusion” highlights the contribution to
the knowledge introduced in the book and makes recommendations
for future work.

27

Chapter 2

Approaches to Modelling
Music Performance:
A Literature Review

I am speaking of things moved in the way that the voice is moved
in speaking and singing, and the body in making a gesture and
dancing… (Aristoxenus of Tarentum, elementa Rhythmica, c.
320 B.C;Todd, 1995a)

Musical performance provides a rich domain for the study of both
cognitive and motor skills (Palmer, 1997). It is a means of communi-
cation involving three actors: the composer, the performer, and the
listener (De Poli, 2004). The composer codifies musical ideas into a
written notation (score); the performer transforms the score into an
acoustic signal; and the listeners recode the acoustic signal back into
ideas (Kendall and Carterette, 1990).

The vast majority of contemporary research on musical perfor-
mance has focussed on perceptual processes of the listener since this
is the focus of all musical activity (Sloboda, 2000); composition would

28

have no purpose if it were not experienced. The composer’s part, the
score, has long been studied and scrutinised in terms of its structu-
ral aspects such as harmony, melody, form, and instrumentation, as
well as studying the composer’s intention or the inherent emotio-
nal expression (Friberg et al., 2006). However, the key to modelling
music performance lies with the performer.

The performer interprets the symbolic information on the score
and produces the sound by using a musical instrument (De Poli,
2004). The performing artist is an indispensable part of the system,
shaping the music in creative ways by continually varying parame-
ters like tempo, timing, dynamics (loudness), and articulation, in
order to express their personal understanding of the music (Mad-
sen and Widmer, 2006).

To model music performance we must first understand the pro-
cesses the performer carries out to ‘interpret’ the piece of music.
Only then will it be possible to artificially recreate this ‘interpreta-
tional’ behaviour. Two main approaches have been taken in attemp-
ting to do this:

The first approach simply searches for patterns of deviations
between the input information the performer is given (the musical
score) and the performance that is produced. The internal processes
are not relevant as long as the behaviour can be simulated. We will
refer to this approach as Simulation-Based Modelling.

The second approach is concerned with the internal processes
of the performer. It attempts to understand the reasoning behind the
performance actions either on a cognitive, physiological, or biome-
chanical level. This too searches for pattern, however, focuses on
behavioural patterns. This second approach will be referred to as
Behavioural-Based Modelling.

Before presenting in detail the two approaches, it is vital to cla-
rify what we are trying to model, which is known in the literature
as Expressive Music Performance (EMP).

29

EXPRESSIVE MUSIC PERFORMANCE (EMP)

He put the bow to his instrument . . . and then, the first notes,
bold and fiery, sang through the hall. At once the spell began to
work. Was this really the music of a violin? What grandeur in
these slurred notes, what absolute purity! There came roulades
of double-stop harmonic notes, and a long run across four octa-
ves, played staccato in a single stroke of the bow . . . Then came
a noble, moving theme, which sounded as though a human voice
was singing . . . After the seemingly endless applause had sub-
sided, Paganini began to play the second movement. It was an
adagio, and showed the virtuoso from quite a different angle.
There were none of the devilish tricks that had stunned the
audience during the first movement. A sublime, angelic song of
great noblesse and simplicity touched the hearts of the listeners .
. . The notes followed one another as though growing out of the
instrument, and it seemed incredible ... that this wooden object
was not an integral part of the man who played it, a part of his
very soul . . . The audience sat as though paralysed until the rhy-
thm of a graceful rondo changed their mood . . . an infinitely ten-
der pizzicato accompanied the melody, and it finally soared away
into a happy dance tune (Farga, 1969, pp.171-2).

Juslin (2003) used this text above, written by Nicolo Paganini in
Vienna 1828, to describe many of the recurrent ideas that surround
a music performance or to be more precise, an Expressive Music
Performance (EMP). Observe the use of abstract terms such as: the
captivating experience, the voice-like quality of certain musical ins-
truments, the idea that music may alter a listener’s mood, the close
connection between music and expression of emotions, the notion
that expression is embodied in the acoustic parameters of the per-
formance, the belief that expression ‘springs from the performer’s
very soul’, the importance of the musical piece itself in shaping the

30

expression, and the ‘devilish tricks’ commonly attributed to the
expressive virtuoso.

It is the expression that makes possible new and insightful inter-
pretations of familiar works, and it is the expressive ability that makes
us prefer one performer over another. Juslin (2003) continues:

It is the expression that makes people go through all sorts of trou-
ble to hear human performances rather than the ‘dead-pan’ ren-
ditions of computers (Juslin, 2003, p.274);

Note that Juslin (2003) uses reciprocally the terms ‘expression’
and ‘human’; He also seems to be very sceptical about the ability of
computer models to produce ‘expressive’ music performances.

In this book, we would also like to emphasize this human aspect
of expressive music performances, but without prima facie denying
that computers can produce ‘humanised’ musical performance, or at
least, something that would not be distinguishable from a musical
performance carried out by humans.

The term ‘expression’, as used in contemporary studies of
music performance, refers to a well-documented systematic devia-
tion from mechanical regularity and the nominal values notated in
the score. Variations in tempo, intensity, timbre and articulation, as
well as the variations in pitch known as vibrato, constitute the most
important expressive characteristics of performed music (Dogan-
tan-Dack, 2006).

We believe that other ‘human’ aspects should also be conside-
red in an ‘expressive’ musical performance. One in particular is the
focus of this book: errors. It would be incorrect to state that an EMP
must contain errors to be really ‘expressive’. However, it is possible
to say that a ‘humanised’ musical performance is very likely to con-
tain errors, given the fallibility of human nature.

Perhaps, measuring the deviations between what is written in
the score and what is performed can indeed indicate what is tirelessly

31

referred to as ‘expressivity’, but it does not reveal the intention behind
the actions, this is discussed in the next section.

SIMULATION-BASED MODELLING (FIRST APPROACH)

Structure-expression relationships have been formalised in compu-
tational models that apply rules to input structural descriptions of
musical scores (Sundberg, 2003; Sundberg et al., 1983a; Sundberg
et al., 1983b). In fact, measuring the deviation of the music perfor-
mance from what is actually written in the score is the most com-
mon technique to quantify the ‘expressiveness’ of the performance.

Extensive work has been developed to identify relevant cues for
musical expression in audio signals and then, with the aid of score-
-matching algorithms, compare these findings with the notated score.
Such cues include: tempo, sound level, timing, intonation, articula-
tion, timbre, vibrato, tone attacks, tone decays and pauses (Poepel,
2005). This approach is referred to as analysis-by-synthesis.

Another approach referred to as analysis-by-measurement takes
empirical evidence directly from measurements of human expressive
performances. Both approaches use the musical notation (score) as
a reference to quantify deviations.

Whatever the source of the data, some computational techni-
ques have been recurrently used in an attempt to model the expres-
sive performance. These models serve to generalise the findings and
have both a descriptive and predictive value (Widmer, 2004). Next,
we present some of these techniques and models.

Rule-Based approach

Computer scientists have been using time and time again the same
successful strategy: analysing the input, analysing the output, esta-
blishing the differences between them and determining various
production rules that would transform the input into the desired

32

output. This rule-based approach has been proven to be very valuable
in deterministic scenarios. For the same input, the same output is
always generated.

One of the first computer software built for musical purpose,
the Groove Systems (Mathews and Moore, 1970), is an example of
this rule-based approach. However, in terms of modelling perfor-
mance rules no other model can compete with the KTH perfor-
mance rule system.

The KTH model has been in continuous expansion for over
25 years and is perhaps the most complete model for musical per-
formance ever built. It incorporates rules for micro-level timing,
metrical patterns and grooves, articulation, tonal tension, intona-
tion, ensemble timing, and phrasing. Since 2001, the KTH model
incorporates some rules to simulate inaccuracies in the motor sys-
tem derived psychoacoustic experiments, involving finger tapping
tasks and models of human timing proposed by Gilden and collea-
gues (2001; 1995).

The ‘noise’ rule in the KTH model consists of two distinct com-
ponents (Juslin et al., 2002). The first component, motor delay noise,
is assumed to originate from the effectuation of each tone gesture. It
is modelled using white noise added to each tone onset time and tone
sound level. Thus, this component only affects the onsets individually
and does not result in any long-term tempo drift. The second com-
ponent, assumed to originate from an internal time-keeper clock, is
modelled using 1/f (fractional Brownian Motions) noise with the
overall amount dependent on the interonset intervals (IOI). The
resulting deviation from the two components closely follows the just
noticeable difference (JND) often referred to in perception experi-
ments (Juslin et al., 2002). Interestingly, listeners rated performances
with the noise rule applied as more ‘human’ but not more ‘musical’

Rule-based systems, although highly efficient, can be cumber-
some. The complexity grows with the number of rules modelled
and every new rule requires a revaluation of all others. As Friberg

33

(1995) and colleagues of the KTM project discovered, a musical per-
formance is a very complex scenario and perhaps rules are not the
best way to model it.

Mathematical Approach

A rather different approach is a mathematical modelling of musical
performance as proposed by Mazzola (2002). The Mazzola model
builds on an enormous theoretical background, namely ‘mathemati-
cal music theory’. The model covers various aspects of music theory
and analysis through a highly complex mathematical approach; it
also involves all sorts of philosophical, semiotic, and aesthetic
considerations.

The Mazzola model consists of an analysis part and a perfor-
mance part. The analysis part involves computer-aided analysis tools
for various aspects of the music’s structure such as metre, melody,
or harmony. Each of these are implemented in specific plugins, the
so-called RUBETTEs, that assign particular weights to each note in
a symbolic score.

The performance part that transforms structural features into
an artificial performance is theoretically anchored in the so-called
‘Stemma Theory’ and ‘Operator Theory’ (a sort of additive rule-ba-
sed structure-to-performance mapping). It iteratively modifies the
‘performance vector fields’, each of which controls a single expres-
sive parameter of a synthesised performance.

Every step of the theory is explained in specific mathematical
terms and with a special terminology that is greatly different from
that commonly used in performance research (Beran and Mazzola,
1999; Mazzola, 2002), but unfortunately, the artificial performan-
ces produced by such models were not compared with real perfor-
mance data (Widmer, 2004). Hopefully, there are more enlightening
ways of modelling highly complex scenarios, such as expressive
music performance.

34

Machine Learning Approach

In the last decade, AI techniques have seen increased use in an attempt
to identify patterns and regularities in expressive music performance
(Madsen and Widmer, 2006).

This method of building computational models of expressive
performance uses inductive machine learning and data mining tech-
niques to autonomously discover significant regularities in large
amounts of empirical data – precisely measured performances by
skilled musicians (Widmer, 2004). This is ideal when situations that
are too complex to have rules ‘manually’ extracted from the data.

Some of these learning algorithms produce general performance
rules that can be interpreted and used directly as predictive com-
putational models. Of course, models in human or artistic domains
cannot be expected to be ‘correct’ in the sense that their predic-
tions will always correspond to the behaviour observed in humans
(Widmer, 2004).

An example of such an approach is the PLCG system proposed
by Widmer (Dixon et al., 2002; 2005; Madsen and Widmer, 2006;
Saunders et al., 2004; Widmer, 2003; Widmer, 2004; Widmer et al.,
2003). In general terms the PLCG runs a series of sequential cove-
ring algorithms in parallel on the same musical data, trying to iden-
tify patterns in the note-level of parameters such as tempo, dynamics
and articulation. These resultant rules are then gathered into clus-
ters and a single rule from each cluster is used for simulating com-
puter-generated expressive performances.

Because the extraction of the rules is automatic, it is crucial for
the success of the ‘learning’ algorithm that the data is representative
and ‘clean’, meaning that any error should be removed. This repre-
sents a problem when the ‘error’ itself is the subject of study.

Furthermore, when the rules are being generated based on devia-
tion from the score, it is assumed that any and every deviation is intentio-
nal. There is no distinction between the cognitive and motor processes.

35

Despite sophisticated algorithmic learning techniques, the ini-
tial limitation of this approach persists: the reasoning behind the
rule does not matter as long as the rule itself works. In the next sec-
tion, we present a rather different approach, where the focus is on
the understanding of the internal processes that lead to certain beha-
viours in musical performance.

BEHAVIOURAL-BASED MODELLING (SECOND APPROACH)

The act of interpreting, structuring, and physically realising a piece of
music is a complex human activity with many facets: physical, acous-
tic, physiological, psychological, social, and artistic (Widmer, 2004).

According to Juslin (2003), performance expression is best con-
ceptualised as a multi-dimensional phenomenon consisting of five
primary components:

1. Generative rules that function to clarify the musical structure;
2. An emotional expression that serves to convey intended

emotions to listeners;
3. Motion principles that prescribe that some aspects of the

performance (e.g. timing) should be shaped in accordance
with patterns of biological motion; and

4. Stylistic unintended local deviations from perfor-
mance conventions.

5. Random variations that reflect human limitations concer-
ning internal time-keeper variance and motor delays;

From these five components listed by Juslin (2003), only the first
one can be investigated using the traditional approach. To investi-
gate the other four topics, a multi-disciplinary approach is required
involving areas such as psychology, musicology, and biomechanics.
On this basis, computational models of music performance are often
used to validate cognitive theories rather than to predict values.

In the next sections, we present some of the schools of thought
behind music cognition and motor control.

36

Musical Structure

The notated music score is but a small part of the actual music. Not
every intended nuance can be captured in the formalism of a writ-
ten musical notation of Common Music Notation (CMN), and the
composers are well aware of this limitation (Widmer et al., 2003)
consequently, interpretation of the music is left to the performer.

Performers must not only decode the symbolic information
written in the music score but also interpret its ‘hidden’ structural
content to adequately communicate the composer’s ideas to the lis-
tener (Drake and Palmer, 1993).

Many findings have established a causal relationship between
musical structure and patterns of performance expression (Clarke,
1988; Palmer, 1989; Sloboda, 1982). One of the most well-docu-
mented relationships is the marking of group boundaries, especially
phrases, with decreases in tempo and dynamics (Henderson, 1936).
Patterns of rubato (tempo modulations) often indicate a hierarchy of
phrases, with deceleration at a boundary reflecting the depth of embe-
dding (Shaffer and Todd, 1987; Todd, 1985; Todd, 1989a).

Naturally, performers must adopt a segmentation strategy to
identify these musical structures. Perceptual studies suggest that the
segmentation of a musical sequence is influenced by three accent
structures: rhythmic grouping, melodic and metric accent structures.

Bean (1939) however, pointed out a human characteristic acting
upon the segmentation strategy: short-term memory capacity. Good
sight-readers work with effective chunking (of the score) using shor-
t-term memory (Gabrielsson, 1999).

Sight-reading is especially important in the first stage of the per-
formance plan, that is acquiring knowledge of the music and develo-
ping preliminary ideas about how it should be performed. According
to Gabrielsson (1999), it is also in this first stage that the structural
analysis reveals the real meaning of the musical information. The
second stage involves hard work on technical problems to establish

37

the spatiomotor pattern required to perform the music. The third
and final stage is a fusion of the two previous stages with trial rehear-
sals that produce a final version of the performance.

The final version of the performance is what the musician
intends to replicate in front of the live audience. Would the audience
be able to perceive the expression in this performance?

Perceptual Modelling

Perceptual invariance has been studied and found in several domains
of cognition, including speech (Perkell and Klatt, 1986), motor
behaviour (Heuer, 1991), and object motion (Shepard, 2002). It has
also been the topic of several studies in music perception honing
(Honing, 2006b).

In a musical context, the perceptual model tries to predict the
degree of expressive freedom a performer has in a music perfor-
mance before the listener perceives a misinterpretation. The ratio-
nale behind perceptual-based models is that, in general, a performer
would like the listener to recognise the original, notated music.

These models attempt to predict when, for example, the rhy-
thm performed with some tempo and timing variations will still be
recognisable as such by the listener. Pisoni (1977) found listeners to
be able to distinguish temporal differences between two successive
acoustic events between 500 Hz and 1.500 Hz signal at a minimum
relative of 20 ms. Moore et. al. (1993) found that the ability of lis-
teners to detect gaps in a signal was around 6 to 8 ms for signals in
the range of 400 to 2.000 Hz. Other techniques have shown figures
as low as 2 ms at frequencies of 8,000 Hz.

The representation and control processes that underlie people’s
ability to recognise, store, recall, transform and generate musical
material is related to the ability to make sense of abstract structural
representations from a complex multi-dimensional stimulus stream,
like music or language (Sloboda, 2000).

38

Whilst the technical component of skilled music performance is
related to the mechanisms of producing fluent outputs, the expres-
sive component is derived from intentional variations in performance
parameters chosen by the performer to influence the cognitive and
aesthetic effect on the listener (Palmer, 1997).

Although most perceptual models of music performance address
timing, some tackle dynamic (intensity) changes as well. A perfor-
mer’s intentional deviations generally correspond to change in sound
level that even non-musical listeners can perceive fairly well, even
when underlying acoustic changes are not identifiable (Palmer, 1997).
Musical experience, nevertheless, does enhance the ability to identify
interpretations and expressive aspects of performance.

Perceptual models have been the preferred approach to model
expressive timing in music performance (Honing, 2006a) but this
is not the only means. In addition to Perceptual Models, Kinematic
Models have also been used in the domain of music cognition. The
latter advocates an intimate relationship between musical motion
and physical movement.

Kinematic Models

To sound natural in performance, expressive timing must conform
to the principle of human movement (Honing, 2003). Todd (1992)
defends the principle that performance, perception of tempo and
musical dynamics are based on an internal sense of motion.

This principle reflects upon the notion that music performance
and perception have their origins in the kinematic and dynamic cha-
racteristics of typical motor actions. For example, regularities obser-
ved in a sequence of foot movements during walking or running are
similar to regularities observed in sequences of beats or note values
when a musical performance changes tempo.

The relationship between musical motion and physical move-
ments has been studied as a form of modelling music cognition and

39

expression (Todd, 1995b). It focuses on the identification of patterns
that are commonly found in music performance and establishes how
these patterns conform to the laws of physical motion.

A considerable amount of theoretical and empirical work
attempts to illustrate apparent relations between physical motion
and music (Honing, 2003) mostly by analysing the expressive timing
of the last sequence of notes in a performance (final ritard) alluding
to a runner coming to standstill (Desain and Honing, 1994; Honing,
2001; Repp, 1994; Sundberg, 1980; Todd, 1992).

A shared assumption from these works is that we experience and
make sense of musical phenomena by metaphorically mapping the
concepts derived from our bodily experience of the physical world
into music. Accordingly, listeners hear the unfolding musical events
as shaped by the action of certain musical forces that behave similarly
to the forces behind our movements in the physical world such as
gravity and inertia (Dogantan-Dack, 2006). Baily (1985) even argues
that the performer’s internal representation of music is in terms of
movement, rather than sound.

Even if the ‘motion’ approached by these psychological studies
is in the metaphorical plane, these studies borrow from mechanics
and kinematics the terms that describe motion, as if it was some-
thing tangible. They talk about mass, force, and speed of an object
in terms of velocity, time, and place. Some studies go even further
and actually apply the laws of physics to musical events.

An example of such a literal interpretation of ‘motion’ is the
work of Das et al. (2001). Based on the fundamental assumption,
first proposed by Todd (1995b), that motion in music can be model-
led using Newtonian mechanics, Das (2001) performed a statistical
analysis of MIDI data and found four basic up-down motion types
in music. By motion, Das (2001) meant ‘a shift of tension that cons-
trained within the dimensions of music time and space and reali-
sed through music structure’. Interestingly, it was found that tempo

40

variations in music performance are indeed compared with the beha-
viour of physical objects in the real world.

Arguments against kinematic models suggest that physical
notions of energy cannot be equated with psychological concepts of
musical energy (Desain and Honing, 1992). Another criticism of the
kinematic models is that they are insensitive to the rhythmic struc-
ture of the musical material (Honing, 2003).

Furthermore, if performers have their own specific force and
mass then it would not make sense to try to find one general curve
that would apply to all performers; this would not correspond to
musical reality. An overall curve shape predicted by the rules that
come with human motion does not convey enough evidence to
support kinematical models of expressive timing (Honing, 2003).

In summary, Honing (2003) states that the perceptual approach
should be preferred over the kinematical approach in order to model
to music cognition. However, he also defends an ultimate solution
embracing both the cognitive and embodied aspects of music per-
ception and performance.

Internal Time-keeping System (Motor Control)

In music performance, the motor system assumes the role of planning
the upcoming movements necessary to execute the task on the basis
of internal clocks. The primary role of the internal clock is to regu-
late and coordinate complex time series such as those produced bet-
ween hands (Povel and Essens, 1985); but it also acts as timekeeper by
controlling the time scale of movement trajectories (Shaffer, 1981).

Fraises (1982) suggests that our internal clock operates at a
prefered rate of 600 ms at the level of tactus. For instance, people
often generate beat patterns around 600 ms in spontaneous rhy-
thmic tapping tasks. Periods greater than or less than this primary
timing level are achieved by concatenating or dividing beat periods
(Shaffer, 1981).

41

Naturally, most models based on internal-clocks exert their
influence at the metrical level in a musical sequence (Parncutt, 1994).
For instance, there is evidence that the timing of musical notes in
piece changes according to different tempi in motor exercises as
Gabrielsson (1999) reported:

1. Faster or slower tempi present a higher variability of inter-
-note intervals than intermediate tempo;

2. The velocity of the key-press (piano) increases with tempo;
3. Left and right hands present different key-press (piano) velo-

cities, note durations, and overlap between consecutive notes.
Performance timing can also exhibit stability at more abstract

hierarchical levels, such as entire musical pieces. The standard devia-
tion of the total piece (35-40 min) duration is about 1% smaller than
that of individual movements within the piece (Palmer, 1997). In
simple terms, if one movement is shortened, another compensates
in duration, which suggests temporal control at a level higher than
the individual movements.

Motor control is responsible for planning and synchronising
the movements of the musician but when it comes to physically per-
form the movement, biomechanical constraints take over. It is due
to the muscles, joints and tendons that the performer is most expo-
sed to failures and breakdowns either caused by internal (e.g. fati-
gue) or external (e.g. temperature) factors.

Biomechanical Models

Psychological studies of music performance have provided a wealth
of information on musical expression and its relationship with the
structure of a piece. However, these studies have largely ignored
the physical manipulation of the instrument by the performer, even
though the mechanics of the player’s body is assumed to play a deci-
sive role in shaping the sound (Sundberg, 2000).

42

Performance is traditionally the means through which works
of music reach audiences, and it is the performance that makes the
physicality of the body behind the music immediately evident to
listeners (Dogantan-Dack, 2006). Yet, it is not common for music
performance models to consider biomechanical constraints in the
generation of music performances.

More often biomechanical models are used in the understanding
and prevention of possible injuries resultant of the accumulation of
micro traumas when the human physiological limits are exceeded,
a common problem for musicians (Ericsson, 1993). Nevertheless,
two studies that contemplated the properties of the human body in
the modelling of musical performance have competed:

1. An ergonomic model for piano fingering (Parncutt et al., 1997);
2. On the complexity of classical guitar (Heijink and Meu-

lenbroek, 2002);

Ergonomic Model for Piano Fingering

Could the modelling of piano performance, like timbral synthesis,
benefit from the introduction of physical models of the performers’
bodies, brains, ears, lungs, lips, and fingers? This was the fundamental
question Parncutt (1997) was trying to answer when he implemented
a ‘virtual pianist’ that incorporates an ergonomic model for fingering.

As in the case of guitar performance, piano performance accom-
modates a number of different fingerings for a given configuration of
notes. There is no such thing as a ‘standard’ fingering for given notes,
although Parncutt and colleagues (1997) have noted that fingers 2
and 3 are more often used than fingers 1, 4 and 5. The fingerings
used by keyboard players are determined by a range of ergonomic
(anatomic/motor), cognitive, and music-interpretative constraints.

Based on biomechanical findings extracted from the literature
(no experiments were reported), Parncutt (1997) designed a set of
rules that would assign points to the most suitable fingering within

43

a particular musical context. The fingering gaining the most points
was then chosen as the optimum pattern.

Basically, Parncutt’s rules considered the stretch of the fingers,
displacements, the use of weak fingers (4 and 5) and the thumb. The
rules were based on Piano playing techniques and, as a consequence,
not portable to any other instruments. However, some of his ideas
and his approach to the problem are relevant to this work. For ins-
tance, Parncutt realised that the application of raw biomechanical
models in musical performance may be possible but it is not ade-
quate. Instead, a distinction between variables like Maximum Possi-
ble Span (hand’s anatomy) and Maximum Practical Span (instrument
playing technique) is necessary.

Although Parncutt’s model did manage to predict some of the
fingering choices and avoidances when confronted to the fingering
preferences of human pianists, his results are questionable because
his model ignored crucial cognitive aspects, such as the use of com-
mon fingerings for scales and arpeggio, rhythm, tempo, articulation,
register and style. More recently, Jacobs (2001) identified some dra-
wbacks in Parncutt’s model and successfully proposed some refine-
ments, most of which were related to the weak-finger rules and a
new scoring system based on physical distance range. Unfortunately,
no addition regard to the cognitive side was made.

On the Complexity of Classical Guitar

Heijink and Meulenbroek (2002) conducted a behavioural study to
explore the biomechanical basis of the complexity of the left-hand
movement in guitar playing. Three factors were analysed in rela-
tion to the notions of postural comfort when playing a sequence
of single notes:

1. The position of the left hand on the guitar neck;
2. Finger span;
3. Hand repositioning;

44

Their study protocol resorted in a performance-related defini-
tion of travel-cost of a movement, proposed by Rosenbaum (Rosen-
baum, 1995), which assumes that a guitarist is likely to choose the
fingering that requires the least amount of physical effort when no
other overriding cognitive or musical constraints need to be taken
into account. This study has high relevance to the present work and
whenever appropriate we will compare our results.

Based on the findings of Heijink and Meulenbroek (2002) work,
Radicioni and Lombardo (2005), Tuohy and Potter (Tuohy and Pot-
ter, 2005a), and Radisavljevic and Driessen (2004a; 2004b) imple-
mented guitar fingering models. Fingering is a cognitive process that
maps each note on a music score to a fingered position on some ins-
trument. It is also one of the most fertile areas of study when model-
ling guitar performance.

Several approaches have been adopted in the attempt to find
the ‘best’ fingering to perform a musical piece on the guitar. All of
them implement some form of a biomechanical cost function to
decide between alternative fingerings, irrespective of the computa-
tional technique used (Burns and Wanderley, 2006; Naofumi Aoki,
2004; Radicioni et al., 2004; Radicioni and Lombardo, 2005; Radicioni
and Lombardo; Radisavljevic and Driessen, 2004a; Sayegh, 1989;
Tuohy and Potter).

While Radicioni and Lombardo (2005) opted to solve the pro-
blem using a graph search algorithm, Tuohy (2005b; Tuohy, 2006)
experimented with neural networks and genetic algorithms. Howe-
ver, both of them have used similar movement cost functions based
on the vertical and horizontal repositioning of the left-hand, finger
displacements, and finger span, and guitar fretboard region; all of
those variables were measured by Heijink and Meulenbroek (2002).

A similar approach has been previously tested by this author
in an agent-based guitar performance system (Costalonga and Vic-
cari, 2004; Costalonga et al., 2008). In this work, we had the oppor-
tunity to test the argument that we wish to put forward here that

45

biomechanical factors play a secondary role in the performer’s choice
of fingerings. Indeed, biomechanical constraints do limit the availa-
ble options of possible fingerings, however musical style, personal
preference, and other cognitive factors are more pertinent than bio-
mechanical, as also observed by Heijink and Meulenbroek (2002).

The evidence that other attributes might play a more decisive
role in the selection of fingering does not diminish the relevance
of biomechanical modelling. On the contrary, it suggests that the
biomechanical approach should be used when modelling involun-
tary movements, or in conjunction with other music performance
modelling approach.

THE ROLE OF ERRORS IN A MUSIC PERFORMANCE

Performers do have an impressive ability to replicate the expressive
profile of a piece in performance, with a degree of variability in the
timing properties of a performance of one per cent or less (Clarke,
1993). However, even expert performers will eventually err for a
variety of reasons (Palmer and Van de Sande, 1993).

Deviations from the musical notation are expected in Western
tonal music as part of a performer’s artistic license, and it is often dif-
ficult to distinguish these artistic deviations from actual errors (Pal-
mer and Van de Sande, 1993). In fact, errors can lead to unexpected
musical discoveries that ultimately improve the performer’s tech-
nique and, as a result, enrich the performance; this effect is known
as serendipity.

The problem of distinguishing deviation from errors was first
noted by Desain et. al. (1997) while he was attempting to produce
a more robust score-matching algorithm. Desain (1997) mentioned
three situations that led score-matching algorithms to perform poorly:

1. There may be events in the score that are not written out
completely (e.g., certain kinds of ornaments);

46

2. In the case of parallel voices, expressive timing may cause the
order of events in the performance to be different from the
order specified in the score;

3. Finally, the performer could omit, insert or change notes by
mistake, often resulting in many alternative interpretations,
especially in the case of repeated notes of the same pitch.

As Desain (1997) observed, performers never play equally. In all
human performance tasks, errors seem to be a frequent occurrence
and they come from different sources: cognitive, motor or mecha-
nical (Palmer and Van de Sande, 1993).

Although errors are a frequent occurrence in music perfor-
mance, there is little documented evidence of this (Palmer, 1992).
Perhaps the most influential study of error in music performance is
the work of Palmer and Van de Sande (1993); Nevertheless, it is a
study of psychology that aims to investigate cognitive plans of music
performance; for that reason, motor and biomechanical constraints
are not contemplated.

According to Wickens and Hollands (2000, p.495), errors can
be classified as: mistakes, slips and lapses. Errors of interpretation
are called mistakes and originate from cognitive processes. Slips are
quite different from mistakes, in a slip the understanding of the situa-
tion is correct and the correct intention is formulated, but the wrong
action is accidentally triggered due to a motor or biomechanical pro-
blem. Lapses overlap these categories; they are the failure to perform
an action when a procedural step is missing which could originate at
the cognitive, motor or mechanical level.

Cognitive Errors (Mistakes)

In the field of psychology, there is a belief that errors in skilled per-
formance arise due to multiple internal representations of the desi-
red behaviour (Garrett, 1980; Norman, 1981). Articulatory properties
(motor commands produced for a specified sequence of successive

47

events) are believed to be a secondary cause in error production,
merely influencing performance plans. Nevertheless, it is acknowled-
ged that the mental plans underlying music performance must consi-
der production constraints in addition to perceptual constraints. For
instance, keyboard performances of musical scales suggest a greater
range of articulatory control for the right hand than for the left hand
(MacKenzie and Van Eerd, 1990).

In their investigation of the cognitive errors in music perfor-
mance, Palmer and Van de Sande (1993) adopted a similar error
coding scheme to that used in speech error research (Dell, 1986),
adapted for the musical domain. A part of this coding scheme is
shown in Figure 2.

Figure 2: Categories of ‘production errors.

Source: Redesigned image inspired by Palmer and Van de Sande, 1993, p.459.

The classification presented in Figure 2 only considers pitch
errors. The ‘source’ indicates whether the classification of the error

48

considered the surrounding musical context or not. The error types
were: note addition, note deletion, note substitution, and note shift.

Substitution involves a note event replacing a target; an addi-
tion involves a note event being added (without replacing a target);
a deletion involves a target being deleted, and a shift involves the
movement of a target to a neighbouring location. Finally, contextual
errors can reflect the range of influence of different plans in the type
of movement, including forward movement (an event performed too
early; anticipations), backward movement (an event performed too
late; perseverations), or both (events switching neighbouring loca-
tions; exchanges).

The results reported by Palmer and Van de Sande (1993) show
that most errors (98%) involved one size unit (chord or note) and
most errors (91%) involved single-notes (whether from part of a
chord or a solitary notated event). Contextual errors made up 57%
of the total errors, the greatest percentages of which were substitu-
tions (31%) and contextual deletions (deletion of a repeating pitch,
31%). Of the movement errors (substitutions, additions, and shifts,
which comprised 69% of the contextual errors), the forward (early)
movement was most frequent (52%), backward (late) movement
second most frequent (37%), and bidirectional movement (exchan-
ges) least frequent (11%).

The ‘production errors’, as referred by Palmer and Van de Sande
(1993), indicated different influences of conceptual (melody inter-
pretation), compositional (across- and within-voice associations),
and articulatory processes (hand and finger movements) in plan-
ning music performance. In addition, the size, harmonic dimension
and diatonic dimension of production errors suggest that retrieval
of musical elements from memory reflects multiple structural levels
and units (Palmer and Van de Sande, 1993).

Palmer and Van de Sande (1993) also reported that articulatory
advantages are independent of conceptual processes of interpreta-
tion. Evidence shows a reduced likelihood of error in the highest

49

frequency voice, which are normally controlled by outer right-hand
fingers; the authors accredited this fact to a consistent and well-lear-
ned mapping of the melody to outer right-hand finger movements in
keyboard performance. Nevertheless, the authors also acknowledge
to ergonomic and biomechanical implications in such behaviour.

Human Factor Engineering, Ergonomics, and Biomechanics
Errors (Slips)

Before the birth of human factors or ergonomics, the emphasis was
placed on ‘designing the human to fit the machine’ (Wickens and Hol-
lands, 2000). Therefore, it is not unusual to find performers contor-
ting themselves around musical instruments that were designed in
the last century, when ergonomics and human factors were not for-
mally taken into consideration when building a musical instrument.

Meister (1989) defines human factors as ‘the study of how
humans accomplish work-related tasks in the context of human-
-machine system operation, and how behavioural and non-beha-
vioural variables can affect that accomplishment’ (Meister, 1989,
p.2). Ergonomics is a broader scientific discipline concerned with
the interaction between humans and artefacts (Salvendy, 1987, p.3).

Both the Ergonomics and Human Factors fields have been con-
cerned to understand the limitation of human abilities independently
of its source, be that cognitive, motor, or biomechanical. The fun-
damental goal is to reduce error, increase productivity, and enhance
safety and comfort when the human interacts with an artefact or sys-
tem (Wickens and Hollands, 2000).

There have been several attempts to classify and model the types
of errors that people make during a task to predict and avoid them.
A well-known technique used in the human factors field to analyse
error is the THERP - Technique for Human Error Rate Prediction
(Swain et al., 1983). THERP provides extensive guidelines for an
analyst to identify errors that might occur at each point in a task

50

analysis and assign probabilities to each error. More on the behaviou-
ral side, SHERPA - Systematic Human Error Reduction and Predic-
tion Approach (Embry, 1986) specifies potential psychological error
mechanisms and then identifies the resultant error.

A more practical approach was proposed by Reason (1987) with
GEMS - Generic Error Modelling System. GEMS focus in on the
rule-based and knowledge-based behaviours and it has been used to
analyse the errors in a variety of industrial situations. Both SHERPA
and GEMS are based on Rasmussen’s SRK model (Rasmussen, 1986).

Extensive research has been done to understand the causes of
errors at the cognitive, motor and mechanical level, but unfortu-
nately few studies have targeted music performance. Conversely,
most of the motor control studies in music performance do recog-
nise the relevance of the error (Haslinger et al., 2004; Juslin, 2003;
Repp, 2006; Sloboda, 2000).

In order to exemplify the relevance that errors might have in a
music performance context, we can compare it with the findings of
a similar motor task: typing in a word processor. Card and collea-
gues (1983) estimated that the typists make mistakes or choose inef-
ficient commands on 30% HEP. The human error probability (HEP)
is the basic unit of human reliability in discrete tasks and it is estima-
ted from the ratio of errors committed to the total number of oppor-
tunities for that error (Freivalds, 2004).

The challenge is to establish when errors are caused by cognitive
processes and when they are caused by mechanical and motor limita-
tions of the body. Is the music piece demanding more than is huma-
nely possible? If so, what are the consequences? In this book, we try to
address some of these questions in the context of guitar performance.

SOUNDING REALISTIC

So far, we have discussed the implications of the internal and motor
processes of the performer in the music performance. However, even

51

if all of these processes were already fully understood and could be
formalised in computer models, we would still need to consider the
characteristics of the musical instrument.

There are two main approaches to producing the sounds of a
musical instrument played by an ‘artificial’ performer: a) build a robot
that is able to play the real acoustic instrument; or b) model the real
acoustic instrument on a computer.

Bilitski (2005) opted for the first approach and built an artificial
mouth that is used to ‘play’ (produce notes) the trumpet. The primary
use of an artificial mouth is to develop physical models of the human
mouth and to enable automatic music performance of wind instru-
ments. Similar strategies have been used with bamboo flute (Mizuno
and Takashima, 2001) and brass (Gilbert et al., 1998).

In essence, an artificial mouth consists of a flux of air passing
through an elastic substance that vibrates resembling human lips. The
challenge of such an approach is to make the machine behave in the
same way as a human body and, in this case, having to determine how
much lip pressure and air pressure to use to play each note. To do so,
Bilitski successfully used a Genetic Algorithms (GA) approach. Inte-
restingly, the termination condition of the adopted fitness function
of the GA was a variation in pitch of +/- 0.4%. This is because the
human ear cannot detect this pitch difference. Once again, a human
limitation contributes to the modelling of music performance

Although interesting, this first approach is highly complex. For-
tunately, it is not necessary to wait for the advances in robotic hands
in order to artificially produce guitar performances. More commonly,
guitar sounds are generated by Sound Generation Units, such as syn-
thesisers and samplers. The advantage of this second approach is
that these Sound Generation Units ‘speak’ directly with the compu-
ter models of music performance through well-established commu-
nication protocol for digital instruments.

Unfortunately, the standard technology for interfacing digital
musical instruments (MIDI) was designed for keyboard instruments

52

(Poepel, 2004a). Consequently, any performance idiosyncrasies of
other types of musical instruments may not be supported. If the
‘bridge’ between the Performance Models and the Sound Generator
Units does not allow the traffic of specialised performance messages,
then the acoustical realism of the synthesizer may have little impor-
tance because it cannot be controlled expressively.

The technical limitations of modern synthesisers can be explai-
ned on the basis that not enough investigation which aims to unders-
tand the biomechanics involved in a guitar performance has been
done. Commercially, the development of such synthesising techno-
logy is not viable because no one would know how to use it. As a
result, Sound Generator Units (synthesizers and/or samplers) tend
to produce a deterministic and inexpressive simulation of music per-
formance that does not consider the human aspects involved in the
task of performing a musical instrument.

In a guitar performance, for instance, information such as dif-
ferent pluck styles (shape, position, angle etc.), vibrato, and dyna-
mic variations need to be embedded in the model (Karjalainen et al.,
1993). Also, special effects such as rubbing and scraping of the string
and various knockings on the guitar body are essential in synthesi-
zing modern guitar repertoire (Erkut et al., 2000; Tolonen, 1998;
Valimaki et al., 1996).

The real-time software synthesizer called PWSynth is an attempt
to effectively integrate guitar performance techniques and sound syn-
thesis proposed by Laurson et al. (2001). PwSynth is a library for Pac-
thWork (Laurson 1996) that implemented a physical model synthesis
of an acoustic guitar. To control the synthesizer a music notation
software package called ENP – Expressive Notation Package is used.

The use of an ‘expressive’ notation is necessary because, as seen
in section 2.3.1 (p.31), the Common Music Notation (CMN) does
not specify all the features of music performance. The ENP extends
the CMN allowing the user to enter both standard and non-standard
expressions specific to an instrument and playing style.

53

The expressions in ENP can be applied to a single note (such
as string number, pluck position, vibrato, or dynamics) or a group
of notes (e.g. left-hand slurs or finger-pedals). Macro expressions
generate additional note events, such as tremolo, trills, portamento,
and rasgueado (a strumming technique using the right-hand finger-
nails that is common in the flamenco playing style). ENP also allows
fine-tuning of timing with the help of graphical tempo functions.

Figure 3: ENP Example 1.
An expressive notation (ENP) example showing a transcription of ‘Loure from
the E major Partita for lute’ by J. S. Bach.

Source: Redesigned image inspired by Laurson et al., 2001, p.44.

Figure 3 shows an ENP example from the classical guitar reper-
toire Note that in addition to conventional pitch and rhythm infor-
mation, the score contains several standard expressions, such as
left-hand slurs and the encircled ‘2’, which indicates that the corres-
ponding notes should be played on the second string. Furthermore,
there are several portamento expressions (lines marked with ‘port’)
that indicate a rapid glide of the left-hand finger. The non-standard
expressions ‘vb5’ and ‘vb4’ denote that the notes in question should be
played with a moderate vibrato (Laurson et al., 2001, p.44)..

Figure 4: ENP Example 2.
Continuation of the previous ENP example shown in Figure 3.

Source: Redesigned image inspired by Laurson et al., 2001, p.45.

54

The ENP also allows the use of non-standard note heads, which
in turn permits the user to express novel instrumental playing tech-
niques. For instance, the first non-standard note head (the box with
a triangularly shaped waveform right after the first run is shown in
Figure 4) indicates that the performer should rub the strings with
the left hand. The second one (the small box containing the letter ‘T’)
stands for a tambura effect whereby the player hits the bridge of the
instrument with the right-hand thumb. The last one (a note-head
with an encircled ‘x’) indicates a hit with the right-hand nail on the
body (golpe in the Spanish terminology).

The combination of PWSythn and ENP is a rather good attempt
to integrate expressive control and synthesis but it does have a dra-
wback. All the performance actions (controlling messages) must
be specified by the user. Even with all the flexibility that the ENP
supports, a specification of a truly realist performance would be extre-
mely time-consuming. Furthermore, the user would have to be an
expert guitarist with a high sense of self-awareness regarding all the
actions he produces during the performance. Ideally, the ENP score
should be derived from a guitar performance model and this is ano-
ther issue that is addressed in this book.

SUMMARY

Music performance provides a rich domain for the study of both cog-
nitive and motor skills. It is a non-verbal communication between
the composer, the performer, and the listener. The composer and
the listener have been psychologically studied in order to unders-
tand the impact of the music on the listener. The performer is the
link between the composer and the listener and the main focus in
the expressive music performance modelling.

The performer’s interpretation of the music is transmitted to
the audience through special techniques that aim to highlight the
composer’s ideas and to convey emotion. The performer is mainly

55

studied from the cognitive side, but he can also be studied from the
motor and mechanical perspectives.

As in any other human activity, music performance is subject
to errors. These errors can be cognitive, motor or mechanical. Nor-
mally, errors are not included in music performance models despite
being a common occurrence. This is partly because machine lear-
ning algorithms do not handle errors very well when searching for
patterns in performance data.

Several computational approaches have been used to model
expressive musical performance: rule-based systems, mathemati-
cal and statistical models, case-based reasoning and, more recently,
machine learning. The only work that actually implemented ‘noi-
ses’ from the motor control as part of music performance is KTH.
In a perceptual study of the KTH model, listeners reported having
found computer performances with errors more ‘human’ but
not more musical.

Another important aspect of a realist computer-generated music
performance is the sonority produced. To be able to recreate the
sounds of performance actions, a synthesiser must allow expressive
control of less non-standard musical techniques (e.g. finger rubbing
on the guitar’s string) and even unwanted noises (e.g. muffled notes
or buzzed-notes).

56

Chapter 3

The Multiple Aspects of
Guitar Performance

The guitar must accommodate itself to the body, not the body
to the guitar. (Carlevaro, 1984, p.2)

In this chapter, we analyse the different elements involved in a gui-
tar performance including the playability of the guitar and biome-
chanical constraints of the guitarist.

The chapter is divided into three main parts. In the first part,
we look into the mechanics of guitars. In the second part, we pre-
sent an overview of guitar playing techniques and how the human
body conforms to this task. The third and last part discusses some
common performance errors and their causes. The chapter concludes
with an application of these aspects within the context of this work.

THE MECHANICS OF THE GUITAR

The guitar has established itself during the 20th century as the world’s
most popular musical instrument (Bennett and Dawe, 2001). Over

57

the last eighty years, it has become the favourite type of instru-
mental accompaniment for both artists and groups. It is estimated
that today there are over fifty million guitarists around the world
(Chapman, 1994).

This popularity and the stylistic development that the guitar
brought to some musical genres (e.g. flamenco, country, blues, etc.)
led to the emergence of many different playing techniques. This has
made the guitar a highly expressive instrument (Poepel, 2004b) and
consequently made computer modelling of the guitar performance
a complex task.

The difficulty in simulating a realistic guitar performance by
computer starts with the limited guitar synthesis techniques availa-
ble. Synthesis techniques based on physical modelling consider just
one of many possible configurations of the acoustic instrument (i.e.
jumbo-guitar with nylon-string, spruce-top, finger-picking etc.).
Any variation in the guitar setup or playing technique would require
a whole new model.

Even if the guitar synthesiser adopted a more flexible approach
towards rendering the performance, the problem of controlling the
performance parameters would remain. In this section, we will focus
on the attributes of the guitar that we believe should be modelled to
produce a truly realistic computer-generated guitar performance.

Guitar Characteristics

A guitar can be classified by its acoustics, playability, fitness and aes-
thetics. Playability and fitness are interlinked parameters, and they
are the focus of our investigation.

Playability (responsiveness) determines how much effort is
required to achieve clear, well-formed individual notes, particularly
during rapid and difficult passages. Fitness focuses on how well the
instrument suits the performer’s characteristics to improve the ins-
trument playability.

58

The guitar design and construction are surrounded by an almost
mystical aura that fuses carpentry skills and art. The luthier can build the
same type of reputation and fame as the guitarist itself. The combination
of the woods, cuts, proportionality, body dimensions and many other
factors determine the quality of the instrument and its suitability for
the performer and musical style. It is outside the scope of this research
to digress into the nuances of the lutherie. Rather, we would like sim-
ply to highlight the mechanical attributes of the acoustic guitar. Figure
5 shows the guitar parts that we will be referring to across this section.

Figure 5: Guitar parts.

Source: Redesigned image inspired by Evans and Evans, 1977, p.261.

59

The Fretboard

The fretboard is a thin long strip of wood, usually ebony or rose-
wood, which is laminated on the front of the neck of the guitar and
above where the strings run. It has raised strips of hard material
(usually metal) perpendicular to the strings against which the strings
are stopped, named frets. The number of clear frets usually stays bet-
ween twelve (classical acoustic guitar) and twenty-three (electric gui-
tar). Note that the number of clear frets may differ from the total
number of frets in the fretboard.

The space between the frets, known as inter-fret space, is an
attribute that greatly interferes in the guitar’s playability. The clas-
sical guitar technique demands a finger span of four frets. If the
inter-fret is too wide then overstretching issues (injuries, delays,
discomfort) are likely to occur; if too narrow and fingers may rub
against neighbouring strings or frets. A general formula to calculate
the inter-fret spaces is given by Equation 1 where d = distance from
nut; s = scale length; n = fret number (Mottola, 2006);

Equation 1: Fret Distance

d s s
n� �()

212

Typically, the fingerboard is a long plank with a rectangular pro-
file. On a guitar, the fingerboard appears flat and wide, but it may be
slightly curved to form a cylindrical or conical surface. Normally only
classical and rhythmic (chord playing) guitars have flat fingerboards.
Almost all other guitars have at least some curvature.

The flatter the fretboard, the more comfortable the guitar is for
chord and rhythm playing. A curvier fretboard is more appealing to
fast solo players since the curvature prevents fretting out (having the
string rubbing against a higher fret during a bend).

60

Figure 6: Scalloped fingerboard.

Source: “Scalloped fingerboard (Escala escalopada)” by Celso Freire, Luthier is
licensed with CC BY-NC-ND 2.0. To view a copy of this license, visit https://
creativecommons.org/licenses/by-nc-nd/2.0/.

The fingerboard can also be scalloped by scooping out the wood
between each of the frets to create a shallow ‘U’ shape as Figure
6: shows. The result is a playing surface where the players’ fingers
come into contact only with the strings (not touching the finger-
board) therefore creating less friction for bends and vibratos, which
result in better control while playing; it also allows guitarists to
play faster because they do not have to invest as much effort into
fretting each note.

Playing a scalloped fingerboard requires a careful balance of
pressure because too much pressure can change the pitch of the fret-
ted note (i.e. during a bend), and too little pressure can cause fret
buzz. Consequently, the majority of players choose to use a traditio-
nal fingerboard on their instruments.

https://creativecommons.org/licenses/by-nc-nd/2.0/
https://creativecommons.org/licenses/by-nc-nd/2.0/

61

Body Style and Size

Ideally, each guitar should be designed according to a guitarist’s
anthropometry, however, this is not economically viable, so major
manufactures have established some middle-range values based on
the average proportions of potential users.

Acoustic guitars come in a variety of shapes and sizes, from
small travel size to jumbo and dreadnought. The body style of an
acoustic guitar determines sound projection and tonal emphasis.
Things to consider are tonal quality vs. playing comfort. For exam-
ple, some acoustic guitar bodies come in a single-cutaway design
like the shape of the Gibson Les Paul guitar, facilitating the access
to the higher frets.

Although the criteria to choose the guitar’s size and style are
usually based on acoustical preference, it is also important to con-
sider the fitness of the instrument to the guitarist. Furthermore,
the style of the guitar body is also linked to the musical style, its
role in a musical performance (e.g. lead, rhythm, solo), and the
arpeggio technique (e.g. flatpick, fingerstyle). Selecting the wrong
guitar for a musical style may increase the probability of errors in
the performance.

The guitar’s body style and dimensions vary according to the
manufacturer; the dimensions used for the Martin guitars are presen-
ted in Table 1. Figure 7 illustrates the attributes presented in the data.

62

Figure 7: Guitar’s body measurements

Source: Own image.

Table 1: Martin guitars dimensions (inches).

Type Clear
Frets

Scale
Length Length Upper

Width
Lower
Width

Depth
(max.)

Concert 12 24.9 19 – 1/8 9 – 1/2 13 – 1/2 4 – 3/16
Grand Concert 12 24.9 19 – 5/8 9 – 3/4 14 – 1/8 4 – 1/16
Auditorium 12 24.9 20 – 7/16 10 – 3/4 15 4 – 1/16
Grand
Auditorium 14 25.4 20 – 1/8 11 – 11/16 16 4 – 1/8

Orchestra 14 25.4 19 – 3/8 11 – 1/4 15 4 – 1/8
Dreadnought 12 25.4 20 – 15/16 11 – 1/2 15 – 5/8 4 – 3/4

From the playability perspective, one of the first attributes to
be observed regarded to the guitar body dimension is scale length; as
previously seen Equation 1, the scale length has a direct influence on

63

the inter-fret spacing and string tension. For the acoustical perspec-
tive, the scale length is usually related to the loudness of the guitar.

String Action

String action refers to the distance between the strings and the frets.
Even a small variation on the string’s height affects the playability
and tone loudness. The action is determined by the neck angle and
nut/ bridge heights.

The neck angle (also referred to as the neck’s pitch, tilt, or incli-
nation) sets not only the string action but also the string intonation.
This is because it affects the amount of stress that is being put on the
guitar through the strings, contributing to the loudness of the tone
and the longevity of the structure.

The action (along with tension) determines the amount of pres-
sure that is necessary to depress the strings against the fretboard (stop
the string). High action is not necessarily a negative characteristic
of the guitar as observed in Table 2. A suggested reference value for
string action at the 12th fret is 4 mm (1/8-inch) (LeVan, 2005).

Table 2: The characteristics of high and low string actions.

High Action Low Action

Pros Loud volume;
Sharp tones;

Lighter to press;
Easy to play a fast run;

Cons Requires more force;
Hard to play a fast run;

Softer volume;
More likely to happen to ‘buzz’;

String Gauge and Tension

The string gauge represents the ability of a string to retain its ‘memory’
over time. Heavy strings can hold their tuning for longer. Also, they can
produce a better tone and higher volumes than lighter strings; howe-
ver, they are also harder to press down and less comfortable to play.

64

Every guitar is designed to operate within a range of string gauges.
Increasing the string gauge also increases the tension and consequently
the string action, eventually increasing the stress in the structure as
a whole. Decreasing the string gauge has the opposite effect but the
reduction in tension may leave the neck too straight to play cleanly.

The scale length and the string gauge are key when determining
the tension under which the guitar will operate. If identical string
gauges are used in a short-scale guitar (22-22.5 inches from the bridge
to the nut) and a long scale guitar (24-24.5 inches), the string tension
on the longer scale instrument will be noticeably greater.

Typical string tensions are about 12-16 kg for an acoustic gui-
tar and about 7-8 kg for electric guitar. Tensions above 17 Kg may
either break the string or damage the guitar, if not both. Equation 2
is used to calculate the string tension, where f is the frequency of the
note in Hertz, L is the scale length in metres, T is the tension in New-
ton, and µ is the mass per unit length of the string (Mottola, 2006).

Equation 2: String tension.

T L f� 4 2 2�

As an example, suppose an arch-top acoustic guitar with a scale
length of 650 mm (25.5 in) and equipped with a set extra-light bronze
strings tuned in the standard ‘E (1st string) – B – G – D – A - E (6th
string)’. Using Equation 2 we calculated the tension of the strings as
seen in Table 3.

65

Table 3: Calculated string tensions for the standard tuning.
where, Hz = Hertz, mm = millimetres, kg/m = kilogram per meter, m = meter
and kgf = kilogram force.

Note Freq.
(Hz)

Gauge
(mm)

Mass
(kg/m)

Length
(m)

Tension
(Kgf)

E 329.63 0.25 0.00040501 0.65 7.60
B 246.94 0.36 0.000784753 0.65 8.26
G 196 0.58 0.001892026 0.65 12.55
D 146.82 0.76 0.003285326 0.65 12.23
A 110 0.99 0.005289196 0.65 11.05
E 82.407 .19 0.007784877 0.65 9.13

Total
Tension 60.80

The guitar in question is an Antoria Archtop Jazz Guitar equi-
pped with a set of strings D’Addario extra-light tuned (standard)
with the aid of an Intelli Chromatic Turner IMT-500. Based on the
Antoria’s scale length, string tensions (Table 3), and proposed string
action values (Table 4) we calculated the necessary force to displace
the strings for the exact length of the string action (Figure 8).

Table 4: Reference string action per fret.

Fret Action (mm)
1 1.25
2 1.50
3 1.75
4 2.00
5 2.25
6 2.50
7 2.75
8 3.00
9 3.25
10 3.50
11 3.75
12 4.00

66

Figure 8: Force to displace the string towards the fretboard.
The x-axis corresponds to the fret region and y-axis to the force (kilogram-force)
to deflect the string considering an ideal String Action as shown in Table 4.

Source: Own image.

The formula used in the calculation is shown at Equation 3,
where f = force, d = displacement, T = tension, and L = scale length (Hago,
2009). It applies only for string excursions that are modest in ampli-
tude. Also, it only considers that the plucking point will happen in
half of the string length. However, a string gets progressively harder
to deform nearer its extremities because the restoring force grows
when the two portions of the string are unequal in length, so the
Equation 3 had to be adjusted to work with the different plucking
points. For example, plucking 1/4 of the way along would be calcu-
lated as 4dT/L + 4dT/3L = 5.33dT/L;

Equation 3: String deflection formula.

f
L

�
4dT

67

The calculations show that the average force required to deflec-
ting the string is around 0.223 kgf. The position that required the
least force (0.141 kgf) was the 5th fret, 1st string; and the position
that required the greatest force (0.438 kgf) was the 1st fret, 3rd string.

Guitar Noises

The distinct tone of a guitar is the resultant sound produced by its
different parts. While the top plate contributes with a very high fre-
quency and harmonically ‘simple’ sound, the neck works in the mid-
dle frequency. The backplate and the ribs have the tone regarding
as having the ‘colour’ - middle frequencies added after a time delay
(Meyer, 1983).

Without a doubt, the acoustic properties of guitars play a very
significant role, if not the most significant, in the simulation by com-
puters of realistic music performance. However, the guitar’s acous-
tic properties are not the scope of this book, except for a particular
type of sound: noises. The word ‘noise’ usually refers to an unwanted
sound, which could arguably be considered unfair. Indeed, there is an
obvious relationship between noise and error; and naturally, perfor-
mers do try to avoid errors. Performance errors (slips) most certainly
terminate in one or another form of noise. However, we believe that
is through the perception of the noise that the audience identifies
the imperfect human nature behind music performance; thus noises
should also be part of a computer-generated performance, but not
all noise is useful. It is important to establish the right balance bet-
ween noises and pure sounds. It is not any ‘random’ noise that will
produce the desired ‘human-feel’ in a computer-generated perfor-
mance. To do so, the correlation between the specific performance
errors and the noises they produce must be found.

Noise is also an important part of the sound signature of an ins-
trument. For instance, the sound from the finger sliding along the
guitar before it is plucked is very characteristic of the guitar. It does

68

not happen on a harpsichord or piano performance. In addition, it
contains not only noise, but also part of the later overtone spectrum
of the tone, or the eigenvalues1 of the guitar body. If the finger noise
is left out an important part of the tone is missing (Cuzzucoli and
Lombardo, 1999).

In guitar performances, there is yet another characteristic noise
caused by the fingers rubbing along the string, known as pre-scratch.
Pre-scratch is a term used to refer to the sound component that pre-
cedes the actual tone. It is caused by the fingers of the right-hand rub-
bing along the string before it is released. In the apoyando and tirandu
techniques, the finger is normally placed on the strings in such a way
that both the fingernail and the fingertip touch the string, producing
noise of very short duration, lasting somewhere between 1 ms and 5
ms, just long enough to be audibly detectable (Valimaki et al., 1996).

The ‘finger slide’ and the ‘pre-stretches’ are the type of noises
that can be found in the modern physical modelling synthesis techni-
ques (Cuzzucoli and Lombardo, 1999; Valimaki et al., 1996). Howe-
ver, in order to make these noises sound realistic in a musical context,
the moment they are used needs to be carefully selected. Finding the
moment when noises (or errors) are likely to happen still demands
more investigation.

There are other noises, however, that has been largely ignored
by Sound Generation Units, even though they occur consistently
in guitar performances. In fact, several different noises can be pro-
duced if not enough pressure is applied to stop the string properly.

With the aid of an INSTRON 5582 Universal Test Machine
(Instron, 2009) we analysed two categories of errors for which lack
of force is believed to be a cause: a) muffled/damped notes; and b)
buzzed notes; Figure 9 shows some pictures of the measurements
being carried out.

1 Any of the possible values of a quantity derived from a differential or inte-
gral equation having solutions that satisfy certain special conditions

69

Figure 9: Pictures of the Antoria’s string tension measurement.
These pictures were taken during the experiment to measure the real force that
is required to produce a clean note on the Antoria guitar.

Source: Own image.

70

The experiment was intended to find the force boundaries nee-
ded to produce clean, buzzed, and muffled notes. All the six strings
of the guitar were measured in three regions of the fretboard: 1st -
3rd frets, the 5th fret; and 12th fret. The values for the other frets were
interpolated. The analysis of the quality of the note generated was
subjective to the personal evaluation of the experimenter.

A muffled note can be caused by the fingertip pulp (skin viscoe-
lasticity) absorbing and damping the string’s vibration. To simulate
this effect, the mechanical part that touches the string was equipped
with a neoprene strip 5 mm thick. (Note that we are not stating that
neoprene is a good material to simulate the human skin, it is purely
an inexpensive and highly available material which have absorbing
properties suitable to this experiment).

The harder the string is plucked, the greater the intensity of the
vibration the material must absorb. Hence, we kept fixed the pluc-
king force at approximately 3 Newton (0.3 kgf) and the plucking
point at ¼ of the scale length (16.625 cm).

Buzzed-notes are usually generated by positioning the finger
too far left on the fret but it could also be generated by the lack of
sufficient pressure to fully stop the string. To eliminate the possibi-
lity of the former situation, we kept the contact point with the force
cell arm within 4 mm from the fret.

Figure 10 shows the recorded values. Note that the values for
fret 4 and frets 6-11 were interpolated, not recorded.

71

Figure 10: Forces to produce a clean note.
The x-axis corresponds to the fret region and y-axis the real force (kilogram-force).

Source: Own image.

The force range required to produce clean notes stayed between
0.204 and 0.897, with an average of 0.423 kgf; this was higher than
initial calculations shown in Figure 8. Surprisingly, the values recor-
ded at the 12th fret (higher action) were even greater than the values
o the 1st fret where the string is harder to deform.

The correlation of the higher recorded forces with higher string
action might suggest a problem with the guitar string height adjust-
ment. Another point to be considered is that the fingertip viscoelas-
ticity (friction) could have a greater influence in stopping the string
than anticipated. Either way, one point is clear: just the force to dis-
place the string is not enough to stop them completely.

The measurement of the required force necessary to produce
buzzed-notes adopted the same procedures used to measure the force
for the production of clean notes. The results can be seen in Figure 11.

72

Figure 11: Forces to produce a buzzed-note.
The x-axis corresponds to the fret region and y-axis the real force (kilogram-force).

Source: Own image.

As expected, the force required to produce ‘buzzed-notes’ is
lower than to produce clean notes, ranging from 0.173 to 0.611, on
average 0.353 kgf or 0.100 kgf less. For this work, any force value
below the recorded for a buzzed-note is treated as muffled-note, even
though this might not always be the case in reality.

Normally, buzzed and muffled notes will often originate from a
poor performance technique but it could also be due to a low-quality
instrument. In order to investigate the discrepancy between the recor-
ded and the calculated force values, we have decided to re-do the calcula-
tion using the real string action of the Antoria guitar, shown in Table 5.

73

Table 5: Antoria’s string actions (millimetres).

Fret/String E(1st) B(2nd) G(3rd) D(4th) A(5th) E(6th)

1 0.175 0.15 0.15 0.175 0.15 0.2

2 0.25 0.2 0.2 0.2 0.2 0.225

3 0.275 0.27 0.25 0.2 0.25 0.275

4 0.3 0.25 0.25 0.25 0.3 0.325

5 0.30 0.26 0.28 0.28 0.33 0.36

6 0.3 0.275 0.3 0.3 0.35 0.4

7 0.36 0.30 0.31 0.33 0.38 0.41

8 0.42 0.325 0.325 0.35 0.4 0.425

9 0.44 0.35 0.34 0.37 0.41 0.46

10 0.45 0.375 0.36 0.39 0.42 0.5

11 0.45 0.39 0.38 0.41 0.44 0.53

12 0.45 0.41 0.4 0.42 0.45 0.55

As can be seen in Table 5, the string actions are slightly higher
than the reference value but not enough to justify the level of diffe-
rence found. Figure 12 shows the calculated force required to dis-
place the string for the full length of the measured string actions.

74

Figure 12: Calculated string deflection based on real string action data.
The x-axis corresponds to the fret region and y-axis the calculated force
(kilogram-force).

Source: Own image.

If we compare the graphs presented in Figure 8 and Figure 12, it
is possible to observe that the string action and the instrument built
quality indeed play a very significant role in the force required to dis-
place the string. However, it did not explain the difference found in
the calculated and measured force values. These differences can be
visualised on the graphs presented in Figure 13.

75

Figure 13: Calculated vs. Measured forces for string displacement.
The outer circle (in blue) shows the measured force and the inner circle (in
red) shows the calculated force. The fret regions are shown in the peripheral
area of the chart.

Source: Own image.

The graphs shown in Figure 13 show the fret region values in
the outer circle and the force values are represented by the inner cir-
cles. The blue line is the measured value and the red line is the theo-
retically calculated values. Note that for the sake of clarity the only
representative frets for this comparison are the 1st, 2nd, 3rd, 5th and
12th. The others are interpolations.

76

As seen in Figure 13 the difference is greater in the strings with
a higher gauge. The measured values are on average 0.144 kgf higher
than those calculated but most of this difference comes from the 12th
fret, especially on the 4th, 5th and 6th strings.

In summary, it is possible to conclude that the guitar setup and
quality do play a role in the generation of buzzed and muffled notes
in addition to the force. Skin viscoelasticity might also be a contri-
buting factor deserving further investigation. The human physiolo-
gical and biomechanical properties are the topics of the next section.

THE BODY BEHIND A (SKILLED) MUSIC PERFORMANCE

Skilled musicianship requires decades of regular practice, estimated
at 10,000 hours (Ericsson, 1993). It is known that long-term trai-
ning leads to highly stable control patterns in individuals (athletes or
music performers) of professional calibre (Shan and Visentin, 2003).

Becoming skilled is largely a matter of developing new reflexes
which occur without conscious control, called conditioned reflexes.
Whenever a sequence of movements is practised for a long time, the
complete movement pattern becomes ‘engraved’ in the brain, allo-
wing the individual to shift the focus to higher-level cognitive acti-
vities, such as the interpretation of a musical piece. Skill reaches a
maximum when learning has eliminated conscious control and move-
ments have become automatic (Grandjean, 1988).

Skilled jobs call for a high degree of: a) quick and accurate regu-
lation of muscular contraction; b) Co-ordination of the movements
of the individual muscles; c) Precision of movement; d) Concentra-
tion; and e) Visual Control (Grandjean, 1988).

In this section, we present some factors arising from the human
body that can impact the quality of music performance.

77

An Overview of Skilled Tasks

Skilled work is mostly a matter for the hands and fingers only (Grand-
jean, 1988). Hand movements are caused by muscles pulling on tendons
to produce rotation around joints. Muscles in the forearm contract to
rotate the hand around the wrist joint, while finger movements can be
produced either by muscles in the forearm (extrinsic to the hand) or by
intrinsic muscles in the hand itself (Wing et al., 1996, p.35).

Fortunately, it is not necessary to be familiar with the com-
plex anatomical structure of the hand to understand its movements.
Hand function can be understood not just in terms of the anatomy
and physiology of the upper extremity but also in terms of the com-
putations that allow hands to manoeuvre as they do, named degree
of freedom (df). With its 27 bones and 39 muscles, the hand has over
25 degrees of freedom (Wing et al., 1996, p.170).

Figure 14 illustrates some of the hand movements and the termino-
logy used to refer to them in the bibliography and throughout this work.

Figure 14: Terminology for hand movements.

Source: Redesigned image from the original available at ASSH - http://www.
assh.org/Public/HandAnatomy/Pages/default.aspx.

http://www.assh.org/Public/HandAnatomy/Pages/default.aspx
http://www.assh.org/Public/HandAnatomy/Pages/default.aspx

78

When the number of muscles exceeds the number of the degrees
of freedom provided by the joints, the system is said to be a biome-
chanically over-specified (Hogan, 1985). In other words, this means
that the brain uses variable combinations of muscle activity to per-
form the same hand movement (Wing et al., 1996) and although the
movement is the same, the performance of the movement is not.
Hence, body posture, limb orientation, and joint angles have a direct
influence in the muscle length which is a determinant to speed and
strength of the movement. For example, the strength in a knee exten-
sor muscle is about 5-10 times greater with the knee flexed at 60-70º
compared to the knee near full extension (about 10º of flexion) body
position and joint angles (Kumar, 2004, p.46).

In order to perform a task, a skilled person has to use the most
appropriate and effective combination of muscles, which is only pos-
sible by mastering this highly complex system. This requires conti-
nuous practice.

When a new technique (movement) is being learned, people
often freeze their joints in an attempt to reduce the number of degrees
of freedom (dfs) that need to be controlled; practice will allow them
to free up these joints and capitalise on the interplay between them
(Wing et al., 1996). Furthermore, repetition leads to a gradual eli-
mination of all muscular activity that is not essential to the skilled
work, decreasing energy consumption and making the movement
more efficient.

According to Carlevaro (1984), the gradual acquisition of
mechanical ability or technique needs to be linked to various stages
of development during a specific period of guitar training. At first,
the different elements are studied in isolation; in a more advanced
stage, they are grouped to form the proper technique. From each
position and movement, every other is born.

Movement is a continuous flow of information that is not fully
stored in the human brain. Findings from memory-for-movement

79

tasks have shown that people are poor at remembering movements
but are good at remembering positions (Wing et al., 1996, p.179).

The suggestion that the joints are frozen to facilitate the learning
of a new ‘movement’ indicates that positions are used as markers to
guide movements. The brain, however, does not store all possible
positions. Instead, it stores a few postures and derives new postures
from these representations (Wing et al., 1996, p.179).

It has been demonstrated by Iberall (1989) that people typically
constrain their handgrip configurations to a small number of patterns.
These patterns are retrieved from the memory and applied to a whi-
chever task resembles the scenario they originate from. If it is neces-
sary, minor adjustments can be applied based on sensorial feedback.
In the context of guitar performance, a bad posture can harm the gui-
tarist and, consequently, his music. If a guitarist adopts a defective
physical posture incompatible with his anatomy to perform then his
technique and musical expression will be compromised (Carlevaro,
1984, p.3) Some of the postures and movements that expert musicians
have to perform to play a musical instrument properly are unnatural
and the classical guitar ranks among the most demanding instruments
in this respect (Heijink and Meulenbroek, 2002). The problem is so
severe, that 48-66% of string players report injuries serious enough
to interfere with their ability to perform (Shan and Visentin, 2003).

In the next section, we describe some of the techniques, move-
ments, and posture expected from a guitarist in order to play the guitar.

The Biomechanics of the Classical Guitar

This section intends to introduce an overview of the basic postu-
res and movements used in the performance of the classical guitar.
Although this study is not limited to classical guitar modelling, it is
the classical guitar style that provides the most refined techniques
and it is the classical guitar literature that best formally describes and
explain the techniques.

80

The main reference for the topics discussed in this section is the
work of Abel Carlevaro (1984), a virtuoso guitar player and teacher
with a strong view on the biomechanical aspects of the classical guitar.

The starting point of what Carlevaro (1984) would consider a
correct technique is related to holding and balancing of the guitar.
A guitar wrongly placed, or a defective attitude in the manner of sit-
ting will immediately generate difficulty in the action of the fingers.

Figure 15: Classical guitar holding position.

Source: Redesigned image inspired by Carlevaro, 1984, p.4.

The guitar leans on the left leg (foot resting on a stool), the bot-
tom side in contact with the right side of the body, the right-arm res-
ting over the upper side of the guitar and the guitar neck pointing
outwards (Figure 15). If the position is correct the guitar is stabili-
sed by four active points of contact: (a) the left-leg, (b) right-leg, (c)
the right arm, (d) the left hand. Three out of these four, need to be
in contact all the time for the guitar to be stabilised.

Before we present a more detailed view of the way the left and right
upper limbs work in the context of a guitar performance it is important
to highlight that this book refers to right-handed guitarists as default.
Normally, the right hand is used to pluck the strings whilst the left-hand
stop the strings in the fretboard region. Nevertheless, some left-han-
ded guitarists invert the strings and the hand’s roles, but not all do. In
fact, the traditional classical school of guitar maintains that left-handed
guitarists must be taught in the same way as right-handed guitarists.

81

The Right Arm and the Plucking Hand

The playing area for the right-hand is considered to be the space bet-
ween the bridge and the end of the fingerboard. The sound varies
according to the exact point of contact: it is sharp and trebly close
to the bridge and becomes progressively more mellow as you move
towards the middle of the string (Denyer, 1992, p.73).

In a three-dimensional analysis of arm kinematics in violin
performance, Shan (Shan and Visentin, 2003) demonstrated that
the right-arm presents a higher motion than the left-arm. In a gui-
tar performance, this is not the case. The right-arm works in a rela-
tively immobile position serving as a point of contact to hold the
instrument, as shown in Figure 16. The shoulder and elbow usually
present a much lower amount of motion if compared to the wrist
and fingers, which are the most stressed articulations of the system.

Figure 16: Classical guitar right-arm positioning.

Source: Redesigned image inspired by Chapman, 1994, p.60.

The natural positioning of the right arm is not completely com-
patible to the arrangement of the strings, so a small wrist flexion and
radial deviation are required to align the fingers perpendicularly to
the strings and make sure the thumb trajectory will not interfere
with the index finger (Figure 17).

82

Figure 17: Flexion and rotation of the wrist (right-hand) in classical guitar.

Source: Redesigned image inspired by Carlevaro, 1984, p.12.

Biomechanically, the use of the right arm as a point of contact is
not a good practice and may even harm the performance. If the gui-
tarist applies excessive pressure with the internal side of the forearm,
in an attempt to gain extra grip to stabilize the guitar then he also
increases the internal friction of his tendons which slows down the
finger flexing and extension.

Another incorrect approach used to compensate a defective pos-
ture is to lean the right-hand against the bridge forcing the annular
(ring) finger to bend and restrict its mobility. In essence, if the pos-
ture is not correct then compensation actions are likely to add stress
to the overall system, ultimately compromising the performance.

Different musical styles and different guitar characteristics
demand different right-hand techniques. While classical and fla-
menco guitars are played with the fingers, steel-string guitars are
normally played with a plectrum (Chapman, 1994). The use of a
plectrum generates greater stress in the extrinsic muscles of the hand
because the wrist, instead of the finger, performs the movement. In
this work, we will discuss only the finger-style technique.

In the fingerstyle technique, the thumb performs radial adduc-
tion/abduction and anteposition movements (Figure 14) to play late-
rally on the basses (Figure 18) and, exceptionally, on other strings too.
This movement is carried out mainly by the intrinsic muscles of the
hand, although the extrinsic muscles come into play when more power

83

is required. In the next section, we will discuss muscle properties, but for
now, it is important to emphasize that these muscles work independently
from muscles responsible for the flexion and extension of the other digits.

Figure 18: Right-hand thumb plucking movement in classical guitar.

Source: Redesigned image inspired by Carlevaro, 1984, p.29.

Note in Figure 18 that for optimum results the thumb must
attack the string perpendicularly in a downward movement. Ano-
ther angle would force the finger to slide on the string producing
unwanted noises (Carlevaro, 1984, p.30).

The index and middle fingers must perform freely without ham-
pering or being hampered by the thumb, usually in alternate ups-
trokes. The flexion and extension of these fingers are performed
exclusively by the extrinsic muscle of the hands. The ring finger per-
forms a similar movement to the index and middle finger but usually
in the bottom strings (higher pitch - soprano voice). Anatomically,
the ring finger shares the same muscles as the index and middle fin-
ger however in the mid-forearm, the main flexor muscle (FDP) divi-
des into two: the radial and the ulnar. The radial part goes into the
index finger, while the ulnar part goes into middle, ring, and little
fingers. Consequently, the latter three fingers tend to move toge-
ther, while the index finger can function independently of the others.

Playing a musical instrument, like the guitar, is a particularly
skilful bimanual motor performance (Wing et al., 1996). Both the

84

upper limbs are equally important in guitar performance modelling.
This work investigates exclusively the role of the left upper limb in
a guitar performance.

The Left Arm and the Fretting Hand

In our work, the left-hand is the main focus of the investigation.
The decision of focusing on the left-hand does not imply it is more
important than the right-hand in guitar performance. We prioriti-
zed the investigation of left-hand because Heijink and Meulenbroek’s
(2002) biomechanical study of the classical guitar has also focused
on the left-hand allowing us a direct comparison of the results. Fur-
thermore, in a bimanual activity such as the guitar playing, if both
hands are investigated then the synchronism between them must
also be investigated; therefore this is outside the scope of this book.

It is through a multi-finger coordinated motor task that the gui-
tarist is able to press several strings at the same time in order to play
chords. However, the fingers of the left-hand rarely perform in isola-
tion; rather, they form a single unit with the wrist, elbow and shoul-
der joints to maximise their reach. Unlike the right upper limb, the
whole biomechanical system of the left-arm is constantly changing
to perform the left-hand techniques required in the classical guitar.

Carlevaro (1984) defines ‘hand presentations’ as the manner in
which the fingers are located in relation to the fingerboard, which he clas-
sifies into: longitudinal, transversal, and combined (mixed) presentations.

In the longitudinal presentation (Figure 19), the fingers are posi-
tioned alongside the strings; one finger per fret. To perform this type
of presentation, the left shoulder needs to drop allowing the elbow to
come closer to the body. The forearm rotates to an almost full supi-
nation position allowing the wrist to remain flexed around 45º in a
neutral (slightly radial) deviation. The fingers are arched to stop the
string perpendicularly on the fingerboard (tip-pinch grip) avoiding
any interference with the adjacent strings.

85

Figure 19: Longitudinal presentation of the left-hand in classical guitar.

Source: Redesigned image inspired by Carlevaro, 1984, p.65.

In the low frets region, the fingers in their most natural atti-
tude cover no more than three frets. The same range in the higher
region will naturally coincide with the four frets required in the clas-
sical guitar technique. This finger span of four frets means that the
fingers will be positioned within approximately 2 cm of each other
(abduction/adduction movement of the fingers). For anatomical rea-
sons, the space between the middle and ring fingers will be gene-
rally smaller than the index-middle and ring-little fingers, making
the performance of chords that demand the placement of the ring
finger far from the middle ringer more difficult.

The flexion of the index, middle, ring, and little fingers involve
the same group of muscles as the right-hand. The thumb, howe-
ver, performs a different movement from that required to pluck the
string (right-hand). To embrace the guitar neck the thumb of the
left-hand performs a palmar abduction (Figure 20), which demands
more power from the extrinsic muscle of the hands. This, however,
does not mean that thumb must be vigorously pressed against the

86

neck, just the opposite; it acts as a support to the other fingers and
not the main force for grip.

Figure 20: Left-hand thumb positioning in classical guitar.

Source: Reprocessed image originally available at Tom Hess - http://tomhess.
net/files/images/FAQ/Left_hand_2.jpg.

On the transversal representation, two or more fingers are pla-
ced in the same fret demanding an almost full radial rotation and
flexion of the wrist to accommodate the fingers on the fretboard.
Consequently, the elbow moves away from the body (Figure 21).

Figure 21: Radial deviation of the left wrist in at transversal hand presenta-
tion in classical guitar.

Source: Redesigned image originally from Carlevaro, 1984, p.66

http://tomhess.net/files/images/FAQ/Left_hand_2.jpg
http://tomhess.net/files/images/FAQ/Left_hand_2.jpg

87

As illustrated in Figure 21, the level of wrist flexion in this pre-
sentation is intimately related to presentation fret location. The fur-
ther the hand moves away from the body, the more the wrist folds
inwards (radial deviation).

In practice, most of the presentations will be a combination of
the longitudinal and transversal presentations, having one of two
fingers presented in one way while the remaining fingers are pre-
sented in another (Figure 22).

Figure 22: Example of a combined presentation of the left-hand in classical guitar.

Source: Redrawn image originally from Carlevaro, 1984, p.66.

While the elbow and wrists provide the rotational movements
that allow the guitarist to adopt the different hand presentations, the
shoulder comes to action when the hand is required to perform a ver-
tical displacement in order to reach the bass strings. It is important
to highlight that the muscles of the shoulder are bigger and conse-
quently slower than the extrinsic muscle of hand, therefore the force
output is not as smooth, which generates jumps in the force deli-
very. In theory, this translates to slower and less precise movements.
Figure 23 illustrates the mechanics of the movement.

88

Figure 23: Vertical displacement of the left-hand in classical guitar.

Source: Redrawn image inspired by Carlevaro, 1984, p.29.

The amount of force used to stop a note should be kept to the
minimum, just enough to produce a clean sound. Excessive force
detracts from freedom and agility of the movement of the finger,
induces fatigue and can even produce an exaggerated hardening of
the fingertip, diminishing the sensitivity and, consequently, the tactile
feedback. In contrast, too little force will not stop the string appro-
priately generating a buzzed or muffed sound.

The Physiology of Guitar Performance

So far, we have seen the physical tasks that are required from a gui-
tarist to perform. In this section, we will talk about the mechanism
that carries out the task: the muscle.

Muscle Strength (Force)

Muscle strength is defined as the force a muscle can exert as a func-
tion of its contractile conditions, where contractile conditions depend
on: a) the length of the muscle; b) instantaneous speed of shortening;
and c) the history of length change (Kumar, 2004, p.45).

89

There are two kinds of muscular effort: a) dynamic - alterna-
tion of contraction and extension; and b) static - prolonged state
of contraction (Grandjean, 1988). To cope with the different types
of effort, our body produces three different types of muscle fibres:

1. Muscle Fibre Type I (SO – Slow Twitch): This type of fibre
produces low force, it has an aerobic metabolism (uses oxygen
to generate fuel - APT), it withstands long-term effort and
it is found in small motor units dedicated to precise control
of movement. It is very efficient and does not produce lactic
acid and is, therefore, less vulnerable to fatigue;

2. Muscle Fibre Type IIb (FG - Fast Twitch): This type of fibre
is found in larger motor units. Because they use anaerobic
metabolism, they are much better at generating short (and
fast) bursts of strength than muscle fibre type I. Their disad-
vantage is that they are more vulnerable to fatigue.

3. Type IIa (FOG): Known as intermediate fast-twitch fibres,
these fibres use both aerobic and anaerobic metabolism
almost equally to create energy.

Typically, a muscle will have all three types of fibres but in
varying quantities. To some degree, the characteristics of the fibres
can be modified through specific training although, to a large
degree, the distribution of fibres is genetically determined (Freiv-
alds, 2004, p.69).

Muscular adaptation involves thickening the muscle fibres and
thereby increasing the total power of the muscle. Training for very
rapid movement means not only increasing muscle power but also
reducing internal friction by getting rid of some of the non-contrac-
tile material, such as connective tissue or fat. Therefore, it is appro-
priate to say that during the period in which a skilled operation is
being learned, we can distinguish between two distinctive proces-
ses: a) learning the movements, and b) the adaptation of the organs
involved in the task.

http://adam.about.com/encyclopedia/Aerobic.htm

90

Normally, a musical performance is not a task that demands a
high level of force. In fact, in many skilled activities, the skilled man
is relaxed and economical in his movements, whereas the novice’s
work is cramped and tiring (Grandjean, 1988). Parlitz et al.(1998)
have shown that amateur pianists not only use more force on every
stroke but also used it for longer.

Even though the intrinsic muscles of the hand are predomina-
tely Type I (slow twitch), hand strength is not an issue for most skil-
led operations, such as the fine manipulation of a musical instrument.
It is preferable to have less powerful but more controllable muscle
in the hand than heavily loaded muscles (fibre type II) that are more
difficult to control and to coordinate with others.

As previously explained, Type I fibres are good for static efforts
but the guitar playing is mostly a dynamic type of effort. This incom-
patibility is solved in two ways: a) modifying the fibres distribution
of the muscle through specific training; b) making use of a more sui-
table type of muscle through the development of a more refined per-
formance technique.

Fortunately, the extrinsic muscles of the hand are responsible for
flexing the fingers and they are predominantly composed by fibres of
type II/IIa. These muscles are best suited for providing a continuous
output force, whereas the intrinsic muscles, composed by fibre type
I, act as stabilisers to metacarpal and phalange joints counteracting
rotational movements (Chao, 1989). Nevertheless, the intrinsic mus-
cles do play a role in the generation of small and finely graded forces
of around 10% maximal voluntary contraction (MVC).

Below there are a few other pertinent remarks related to the
use of the intrinsic muscles of the hand to generate force during a
guitar performance:

1. Intrinsic muscles of the hand, rather than the extrinsic, are
responsible for flexing or extending only one finger at a time.
In a guitar performance this will happen then just one finger

91

needs to be moved while the others should remain in their
positions (e.g. performance of grace notes);

2. Intrinsic muscles produce more force during the tip pinch
than during power-grip (Wing et al., 1996, p.84). The power
grip is the one adopted when holding a tennis ball, for exam-
ple. The tip-pinch is the grip that most resembles a finger
position in guitar performance (Figure 24). This means that
the intrinsic muscle of the hand may have to generate more
force for playing the guitar than to perform any other task.

Figure 24: Tip-pinch grips illustration in classical guitar performance.

Source: Redrawn images originally available in Mathiowetz et al., 1985 (left)
and http://www.acguitar.com/media_files/articles/193/23824/classic_
left.jpg (right).

Although our mechanical analysis of the guitar has proved the
opposite, Carlevaro (1984) believes that in a guitar performance there
is no reason for a finger to apply more pressure than another. Either
way, it is important to establish the maximum pressure (force) a fin-
ger is capable of producing.

Each muscle fibre contracts with a certain force and the stren-
gth of the whole muscle are the sum of these muscle fibres. The
maximum strength of a human muscle lies between 0.3 and 0.4 N/
mm² per the cross-section (PCSA); thus, a muscle with a cross-sec-
tional area of 100 mm² can support a weight of 3-4 kg (30-40 N)
(Grandjean, 1988).

http://www.acguitar.com/media_files/articles/193/23824/classic_left.jpg
http://www.acguitar.com/media_files/articles/193/23824/classic_left.jpg

92

The main force producer muscles in the flexion of the index, mid-
dle, ring are the Flexor Digitorum Superficialis (FDS) and the Flexor
Digitorum Profundus (FDP). In a pinch grip action, the tendon for-
ces were found to be in the range of 25 to 125 N (12.74 kgf) for the
FDP and 10 to 75N (7.6 kgf) for the FDS (Freivalds, 2004, p.215). This
power output is more than enough to produce clean notes on gui-
tar as seen previously in Section 3.1.6, p. 56 – the measured force to
generate clean notes on a real guitar ranged from 0.204 to 0.897 kgf.

However, the normal pinch grip only involves two fingers: the
index and the thumb. These to fingers flex and extend using indepen-
dent muscles, unlike in multi-pinch type of grip involving the index,
middle and ring finger. As previously mentioned, the FDP muscle
is shared by the index, middle, ring and little fingers. In a multi-fin-
ger pinch grip scenario, how much force would each finger produce?

In a power grip, it is known that individual fingers do not con-
tribute equally to force production. The middle finger is the stron-
gest at 28.7% of the grip force, followed by the index, ring, and little
fingers, with percentage contributions of 26.5, 24.6, and 20.2% res-
pectively (Freivalds, 2004). A muti-pinch grip is not a conventio-
nal type of grip so the force distribution values could not be found
in the literature.

Nonetheless, it is important to emphasise that in guitar perfor-
mance the strength of the fingers does not come exclusively from
hand intrinsic and extrinsic muscles, but a from a muscular system
in which the hand is just one participant (Carlevaro, 1984, p.172).
However, the maximum strength application is limited by the wea-
kest segment or joint implicated in that particular activity, which is
usually the intrinsic hand structure.

We conclude this section reporting some facts related to force
production that could affect a guitar performance:

1. The optimal operating range of a muscle is in the middle of
the articulation working range (plateau region), as verified
Heijink and Meulenbroek (2002);

93

2. Female grip strength typically ranges from 50 to 67% of male
grip strength but 35% of the gender difference can be explai-
ned by hand size (Kumar, 2004, p.183);

3. Non-preferred handgrip strength is 80% of the preferred
handgrip strength(Shock, 1962); A ‘10 % rule’ (dominant
hand is 10% stronger) it is also often referred in the biome-
chanical literature (Schmidt and Toews, 1970);

4. With the increase of age, muscles become smaller. Conse-
quently, the strength and speed of the movements decrease.
This decrease appears to occur more significantly in people
over the age of sixty (Kumar, 2004, p.75);

Endurance and Fatigue

Endurance is defined as the ability to persist in a physical task and is
typically measured in time (Kumar, 2004, p.85). In other words, it
is the ability to sustain continuous dynamic contraction or isometric
contraction for a prolonged period of time. Duration, intensity and
frequency must be considered when analysing endurance.

Endurance and fatigue are reciprocal concepts however they are
not the same. Fatigue prevents the continuation of a physical task
that reaches the limit of endurance; two people can have the same
fatigue and yet vary in endurance.

Fatigue denotes a loss of efficiency and a disinclination for any
kind of effort, but it is not a single, definite state. In physiology,
muscular fatigue is a phenomenon that reduces the performance of
a muscle after stress, not only reducing its power but also slowing
the movement (Grandjean, 1988, p.175).

According to Carlevaro (1984, p.22), the isolated work of the
fingers is the main cause of muscular fatigue in guitar performance.
This occurs because the Type IIa muscles involved in the flexion of
the fingers (FDP and FDS) are overly stressed by a poor technique.

94

Although daily training can lead to a gradual muscular adap-
tation by thickening the muscle fibres, it can not reduce muscular
fatigue if the real cause of this fatigue lies in defective technique (Car-
levaro, 1984, p.23). In a correct guitar technique, the effort should be
distributed within the muscles of the hand, wrist, and arm.

A professional guitarist is, supposedly, someone who is highly
aware of the correct guitar technique and very fit for the task. Even so,
he will eventually succumb to fatigue. When this happens, not only
will his muscular ability to perform the task is compromised but also
his perception of time, making the task appear longer that it actually is.

To exemplify the level of effort that can be encountered in gui-
tar performance, consider an F major chord executed as shown in
Figure 25. If we consider the Antoria guitar and calculate all the
measured force (Figure 10) required for producing a clean note in
all the positions of this chord, we would end up with the cumula-
tive force of 2.28 kgf to perform this chord shape in the first fret.
The same chord shape in the 10th fret would require a force of 3.52
kgf to be performed.

Figure 25: F (barre) chord shape.

Fonte: Source: Creative Commons by Mjchael is licensed with CC-BY-SA-3.0
(https://commons.wikimedia.org/wiki/File:Chord_F.jpg).

https://commons.wikimedia.org/wiki/File:Chord_F.jpg

95

Normally, an additional 10-40% of extra-force is unintentionally
used as a safety margin (Wing et al., 1996), which would increase the
force to 4.92 kgf.

A barre-chord is a type of palmar pinch grip. The average maxi-
mum force of a palmar-pinch grip of the left-hand of male adults
stays around 10.4 kgf (Mathiowetz et al., 1985), hence a 47.3% MVC
is required to perform this chord.

Danion and Galléa (2004) propose that steady force output by
the fingers can only be maintained at a level 30-40% MCV, meaning
that anything above this range can only be maintained for a short
time usually bellow 6 seconds. Carlevaro (1984, p.104) himself pro-
posed exercises capable of draining the muscle in 15-20 seconds.

Muscles that are not directly involved in the force production
undergo fatigue too. If the primary muscles suffer fatigue, an unin-
tended contraction of other muscles induces a change in posture to
alleviate the primary fatigued muscles. This means that the task will
be performed by muscles that are not the most effective to the task,
inducing loss of precision and increasing the risk of errors. This
phenomenon is known as contralateral activation and it is more evi-
dent in highly repetitive tasks or tasks that require awkward postu-
res, such as guitar playing.

Fortunately, because of the redundancy found in the hand’s bio-
mechanical system, changing the force application along the finger
axis provides an important variation in the participation of muscles
in force exertion allowing for the temporary relaxation of the fati-
gued motor units (Kumar, 2004, p.185). Therefore, with the cor-
rect technique, it is possible to manage some situations that could
lead to fatigue.

Speed

The speed of the muscle contraction is a powerful determinant of
muscle strength and, as a consequence, the speed at which a physical

96

work task is performed. For instance, the shortening of a muscle at
a mere 10% of its maximal speed causes approximately 50% loss of
strength from the isometric force (Kumar, 2004, p.46).

While muscle force is proportional to physiological cross-sec-
tion area (PSCA), muscle speed (or excursion) is proportional to
fibre length. Muscles of different architecture, but the same fibre
type, may differ in strength and speed by factors of ten or twenty
(Wing et al., 1996, p.69).

The maximal velocity of the fibre shortening (V0) is expressed
in terms of contractile element lengths. Wickiewicz, Roy, Powell
and Edgerton (1983) suggests the maximum speed for the contrac-
tion of human muscles is about 8 lengths/s for slow-twitch and 14
lengths/s for fast-twitch. These values, however, need to be treated
with some reservation because they were extrapolated from mixed
fibre muscles experiments.

The fibre type composition of the finger flexor muscles (FDP
and FDS) is mixed, with a slightly lower proportion of type I fibres
(Maurer et al., 1995; Mizuno, 1994). Considering the FDP (index
finger) fibre length of 61 mm (for FDS is 31 mm), a full contraction
would take around 70 to 125 ms.

As presented in Section 3.2.3.1(p. 74), a full contraction of the
muscle would produce more force than is necessary to play a clean
note, which is on average around 0.423 kgf. The question is how fast
the flexor muscles can produce just sufficient force to play a clean
note. This force-velocity relationship has attracted much interest in
muscle physiology since this relationship contains useful informa-
tion concerning the basic mechanisms of muscle contraction (Wohl-
fart and Edman, 1994).

Hill (1938) was the first to demonstrate that the force-velocity
relationship in skeletal muscle can be adequately described as part
of a rectangular hyperbola. This force-velocity curve for a contrac-
ting muscle can be written as:

97

Equation 4: Hill Equation – Force-velocity of contraction muscles.

()() ()F a v b F a b� � � �
0

Where F is the force generated by the muscle, v is the velocity of
shortening, F0 is the maximal isometric force at optimal contractile
element length, and a and b are constants with units of force and
velocity, respectively (Kumar, 2004, p.62).

‘a/F0’ and ‘b/V0’ are dimensionless quantities of an approximate
value of 0.25 for many muscles across species and temperatures
(Hill, 1938), including human fast-twitch fibres at 37ºC (Faulk-
ner et al., 1986; Faulkner et al., 1980).

Measuring the maximal velocity of shortening in human skele-
tal muscles is difficult (Kumar, 2004, p.64); however, a rough estima-
tive may be obtained by determining the maximal power output of
a group of muscles as a function of movement speed. Knowing that
the maximal power is achieved at 31%, it is assumed that a/F0=b/
v0=0.25 (Herzog, 1994). Power is given by P = Fv.

Re-arranging the Hill’s equation, we can calculate Force as:

F
F a b

v b
a�

�

�
�

()

()

0

To exemplify, let us suppose the FDP is the only force producer
for the flexion of the index finger. The FDP has cross-sectional area
(PSCA) of 177 mm² (Doyle et al., 2003, p.107), meaning its maximal
isometric force F0 = 177 x 0.3N/mm² = 53.1N/mm² (5.41 kgf).

Because the FDP is a mixed composition fibre type with slightly
less proportion Type I, we will consider its V0 = 10 lengths /s. The
constants are given by: a = F0 x 0.25 =1.125N/mm²; and b = V0 x 0.25
= 2.5 length/s.

98

Figure 26: FDP muscle estimated output power.
The x coordinates represent the contraction rate measured in length per second
and the y coordinates represent the output power measured in kilogram-force.

Source: Own image.

Figure 26 shows the estimate output curve for the FDP, where
around 0.2 of its fibre length the muscle produces 0.81 kgf, enough
to play a clean note in virtually any position of the fretboard. In a
time measuring unit, 0.2 length/s corresponds to 20 ms.

Other Factors that Impact Musical Performances

Training level: Skilled performance declines with the retention
interval although the rate of forgetting can be slow, sometimes non-
-existent. Different skill types have different lengths of skill retention.
Perceptual motor skills, such as playing an instrument, driving, flight
control, and most sport skills, generally demonstrate that very little
is forgotten for long periods of time. In contrast, procedural skills,
which require a sequence of steps, such as how to use a text proces-
sor are more rapidly forgotten (Wickens and Hollands, 2000, p.283).

Music Performance Anxiety (MPA): MPA or stage-fright
is a serious problem that has prevented many excellent musicians

99

from pursuing a career in music. This is caused by fear of failure that
often becomes a source of distraction and leads to poor performance
(Thompson et al., 2006). There is a suggestion that MPA could also
have a profound effect on the efficiency of the movement of mus-
cles in fingers.

Temperature: Skin temperature has a profound effect on nerve
conduction parameters. The effect on latency caused by temperature
drops may be as large as 0.1 ms/º and increases almost linearly by 2.4
ms/º, as the temperature increases from 29 to 38ºC (Johnson and
Olsen, 1960). The protocol to take measurements of muscle strength
and speed demands requires a body temperature of 37º C.

SUMMARY

Errors in music performance have been studied mainly in the domain
of cognition, which Palmer and Van de Sande (1993) referred to as
production errors. On the physical level, mistaken actions are stu-
died in the Ergonomics field but the focus is on avoiding errors rather
than modelling them in order to recreate them.

Imperfections in guitar playing technique often give rise to dis-
crepancies between the intended music and what is actually produced
(Carlevaro, 1984, p.92); these errors can be called slips. In Section 3.1
we have explored some of the mechanical aspects involved in playing
the guitar and how some ‘unwanted’ noises are produced, discussed
at 3.1.6. We have seen that forces between 0.204 and 0.897 kgf are
necessary to produce clean notes on a guitar.

In section 3.2 we have presented how the guitarists’ body copes
with the task of guitar playing and some of the biomechanical and
physiological reasons that could prevent him to operate the guitar
as it should to produce a clean performance.

These reasons are related to: force, speed, and precision. Each
of them relates to particular errors in guitar music performance. For
example, lack of force can lead to muffling of buzzed notes.

100

We have also explained how fatigue leads to precision errors.
If the primary muscles normally used to perform a task are fatigued
then secondary muscles are recruited. However, the secondary mus-
cles might not be fast, precise, or powerful enough for the task.

A common problem found is the recruitment of highly loa-
ded muscles to perform skilful tasks. If the output power provided
by these muscles is not smooth (fibre type II) than skilled tasks that
require precision are more difficult to perform, consequently, more
errors are produced. Quite intuitively, faster movements terminate
less accurately, whereas targets covering small areas requiring increa-
sed accuracy are reached with slower movements (Wickens and Hol-
lands, 2000, p.13). Therefore, it is fair to presume that neighbouring
areas (adjacent string and frets) are more likely to be hit by accident.

In order to verify the importance of the speed, force and preci-
sion of guitarists in a music performance we have designed a set of
experiments to measure these parameters. These experiments are
discussed in the next Chapter.

101

Chapter 4

Guitar Performance Data
Acquisition and Analysis

Music has just as much to do with movement and body as it do
to soul and intellect. (Esa-Pekka Salonen)

In the field of ergonomics, performance measurements are generally
associated with one of four categories: measures of speed or time,
measures of accuracy or error, measures of workload or capacity
demand (how difficult is to use the product), and measures of prefe-
rence (Wickens and Hollands, 2000, p.13). In biomechanics, perfor-
mance is mostly characterised in terms of endurance, strength, speed,
and accuracy (Sanders and McCormick, 1993, p.215).

Even though we acknowledge the relevance of all these attri-
butes in guitar performance, we limit ourselves by measuring only
the attributes that we believed would have the greatest impact on
the outcome of guitar performance computer modelling. These are:
precision/accuracy, speed, strength/force, and posture.

The tasks involved in the biomechanical musical experiments
must be very simple in both cognitive and musical terms (Heijink and

102

Meulenbroek, 2002); By choosing simple tasks it is possible to minimise
or completely exclude delays originating from the cognitive difficul-
ties. Wargo (1967) estimates that this delay ranges from 113 to 528 ms,
but it can be reduced with training and anticipation of the movement.

In biomechanical terms, the performance of a monophonic
line is simpler than a polyphonic line because it does not necessarily
require the coordination of multi-fingers in a chord execution. Based
on that, Heijink and Meulenbroek (2002) opted to use monophonic
phrases (scales) in their biomechanical study of guitar performance

However, most finger movements made by primates (including
humans) are not isolated movements of a single digit (Wing et al.,
1996, p.81) as earlier observed by Parncutt (1997) in his ergonomic
studies of pianists. The reason for the involuntary movement of adja-
cent fingers is that the FDP muscle located in the midarm (one of the
main source of power for finger flexion) divides into two parts: the
radial and the ulnar. The radial part goes into the index finger, while
the ulnar part goes into middle, ring, and little fingers. Consequently,
the latter three fingers tend to move together, while the index finger
can function independently of the others (Freivalds, 2004). As a result,
we have decided, rather than following Heijink and Meulenbroek’s
(2002) monophonic strategy, to make use of chords in our experiment.

The chords we have selected are often taught in the first stages
of guitar training. This increases the chances that the guitarists will
be familiar with the selected chords and, as a consequence, reduce the
cognitive activity involved in the performance of these same chords
(coordinated reflex).

In musical terms, chords are a group of notes played together.
In biomechanical terms, this means that the guitarist is likely to have
to use more than one finger to be able to perform the chord. But,
because the guitar is a polyphonic instrument, there are different
ways to perform the same chord. We will refer to the way the chord
is performed as a chord shape. Figure 27 shows the chord shapes of
the chords used in the experiments.

103

Figure 27: Chord shapes used in the experiment.
The 6x4 matrix objects seen in the image represent a guitar fretboard; the black
circles inside the matrix a show the positioning for the fingers. The horizontal
line linking two points represent a ‘barre’. The hollow circle on top of the matrix
indicates an open string and the ‘x’ mark indicates the string should not be played.

Source: Own image.

We have decided to adopt a system known as CAGED and EDAm
to select the ‘shape’ (fingering) of the chords (Edwards, 1983). With
the addition of a barre2, the chord shape that composes this system
becomes ‘moveable’. For instance, Chord B (with the barre addi-
tion) has the same basic shape as the chord A but two frets closer to
the guitar’s body.

The selection of well-known chord shapes that have been lear-
ned in the early stage of guitar training contributes to the extrapola-
tion of the results to other chords with similar chord shapes. This is
possible because the brain works with similarity meaning that instead
of storing all possible body positions, the brain derives new postures
from a few basic ones (Wing et al., 1996). Three male right-handed

2 The barre technique is used to stop more than one string using just of fin-
ger, normally the index finger.

104

guitarists, aged between 19 to 30 years old, took part in the experi-
ments. All of them have had at least two years of classical training but
just one considers himself a classical guitarist. The others sought spe-
cialisation in more popular genres such as jazz, rock and blues. The
subjects have between 6 and 20 years of guitar playing experience.

Despite the qualitative characteristics of our research, we have
tried to keep the factors that could possibly add uncertainty steady,
facilitating a comparison between the subjects. As previously seen in
Chapter 3, some of these factors are: gender, age, body (skin) tempe-
rature, hand dexterity, state of training, muscle constitution, momen-
tary motivation, and fatigue (Grandjean, 1988).

In the biomechanical study of Heijink and Meulenbroek (2002),
six male professional classical guitarists ageing from 22 to 36 years
old were assessed. In comparison, a sample of three guitarists does
not appear to be large enough to represent a population and, in fact,
it is not. However, rather than seeking the generalisation of a popu-
lation, we were pursuing an understanding of an individual guitarist.

In summary, more time was invested and more data was collec-
ted from every individual subject rather than focusing on the group
as a whole. To put this into perspective, if we compare only the
first experiment against the whole experiment of Heijink and Meu-
lenbroek, our subjects played an average of 540 notes against 264
notes played on Heijink and Meulenbroek’s (2002) experiment, an
increase of 104%.

SHARED PROTOCOL FOR BOTH EXPERIMENTS

To ensure the optimum performance of the subjects a strict protocol
was put in place before the start of the measurements.

1. The methodology and objectives of the experiment were explai-
ned to the subjects as well as their right to withdraw at any time.
If the subject wished to proceed, the authorisation form was sig-
ned. The subjects were paid £6 per hour for their participation.

105

2. To avoid electromagnetic interference in the recording equi-
pment, mobile phones or any other unnecessary electronic
equipment were switched off and/or removed from the room;

3. The subjects were asked whether they had any injury or
abnormal circumstance that could impact his ability to
play the guitar;

4. The subjects were instructed not to play any stringed instru-
ment within the 12 hours previous to the experiment. This
cautious recommendation was made to avoid accumulated
fatigue. However, due to the nature of the muscles used in the
task and the level of MVC3 expected, a full recovery should
take no more than a few minutes;

5. In terms of work design, it is inadvisable to perform precise
activities immediately after heavy work since some smaller
motor units may be fatigued and larger ones will be recruited
with less precise control (Freivalds, 2004, p.69). If requested,
a fifteen-minute rest was provided to attenuate any fatigue of
small motor units that could have occurred during commu-
ting to the lab (e.g. cycling);

6. The body temperature was taken and ensured to
be around 37ºC;

7. A reasonable amount of time (relative to the experiment)
was given to the subjects to familiarise themselves with equi-
pment. This was done through proposed finger warm-up
exercises. Cold fingers lose their sense of touch and motility
and become numb (Singleton 1972, p.42)

8. Once the experiment had finished, the subjects were debriefed.

3 Maximal Voluntary Contraction.

106

EXPERIMENT 1: SPEED AND PRECISION

Music performance is a skilled activity that demands very fast and
precise movements from the performer. Thompson and Dalla Bella
(2006) have shown that pianists may be required to play up to 30
sequential notes per seconds over extended musical passages.

As an athlete, a ‘virtuoso’ instrumentalist is the result of years
of exhaustive training in which his body and mind go under con-
tinuous adaptation to maximize his genetic pre-disposition to the
task. A performer is always faced with two problems. One concerns
the purely mechanical difficulties contained within a musical work,
the other the interpretative and expressive aspects of the music. It
is highly advisable to tackle the latter problem first, for the artistic
domain should be entered from the very beginning (Carlevaro, 1984).

Abel Carvelaro, a virtuoso guitarist himself, believes that the
precision and efficiency of the movement is tied to the mental repre-
sentation that prepares the mechanisms used to perform the action.
He says: “One of the precious faculties of a true performer is knowing
how to select his movements” (Carlevaro, 1984, p.21).

According to Wickens (2003), one of the ways to improve the
speed of the movements is to anticipate them, reducing the number
of possible alternatives when the time to act comes. A less obvious
strategy is to use body members closer to the cortex to reduce neural
transmission times that could vary from 100 m/s to 25 m/s, respec-
tive to the larger and smaller (more precise) type of neurons found
in the Central Nervous System.

The secret of remarkable manipulative skills of the human lies
in the way manual tasks are organised and controlled by the ner-
vous system says. (Johansson, 1996, p.381)

Even though the subjects were given enough time to practise
every single chord shape before the readings were taken, the selection

107

of trivial chord shapes enables the neurological process of move-
ment anticipation. This suggests that, if no other motor control cons-
traint is considered, the performance time required for performing
the chord shapes should be very similar. This refutes the hypothesis
that some chord shapes takes longer to perform than others due to
biomechanical constraints.

Rosenbaum (1996) has already proven that motions can be made
more rapidly in certain ways and directions because of the nature
of human physical structures. This theory was formalised in a tra-
vel-cost function for motor behaviour. As previously explained, his
theory assumes the use of basic ‘stored’ postures to create new ones;
the selection of which ‘stored’ postures to use is based on the effort
to move from one posture to the other. This concept has been widely
used in computational fingering models for guitar.

Of course, a travel function implies a departure and arrival point
or posture. To minimize the interference regard to the initial hand’s
position prior to the chord shape performance we have established
frames of reference. A frame of reference is a term that came from
classical mechanics where the validity of Newton’s laws of motion
were associated with an inertial reference point, for example, one
that was fixed to the earth (Wing et al., 1996).

In our experiment, two frames of reference were proposed: one
in the top (6th) and another in the bottom (1st) string of the gui-
tar (Figure 28).

108

Figure 28: Frames of Reference proposed for the experiments.
The horizontal lines represent the guitar strings; the vertical lines represent the
frets. The black circles with a numeral inside indicate the positioning for the
fingers, where 1 = index, 2 = middle, 3 = ring, 4 = little finger.

Source: Own image.

So far, I have described how time and distance have been consi-
dered in this experiment but there is another variable closely related
to these two: accuracy. Fitts (1954) was one of the first researchers
to look into this multi-variable correlation proposing an equation
which later became known as Fitt’s law. According to Fitt’s law, fas-
ter movements are less accurate, whereas precise moments are slo-
wer (Wickens and Hollands, 2000, p.387). This reciprocity between
time and errors has been well documented across different areas and
constitute one of the fundamental tenets of ergonomics, referred to as
the index of difficulty of the movement (Wickens et al., 2003, p.263).

In our experiment, we hoped to demonstrate this positive corre-
lation between response time and error rate by requesting the subjects
to perform the chords as fast (and accurately) as they possibly can.

Although precision errors were not in the scope of Heijink and
Meulenbroek (2002) experiments, they did acknowledge that the

109

positioning of the finger too far to the left would lead to a buzzed
note and too far to the right a damped (muffled) note. On average,
they found a variance in the spatial domain in the range of 4 mm in
a guitar with inter-fret spacing varying from 12.9 to 36.5 mm.

Further, Heijink and Meulenbroek (2002) revealed other inte-
resting findings; the index finger was placed farthest from the fret as
opposed to the little finger that was placed closest. The middle and
ring ringer were placed in between these two. The authors suggested
that the player must have positioned the index finger farthest from
the fret to avoid damping the string whilst the little finger was pla-
ced closer once it is almost perpendicular to the fretboard.

Another strategy to avoid performance error is the progressive
positioning of the fingers closer to the frets in higher frets (toward
the guitar body) given that, due to the mechanics of the guitar, in the
low end (closer to the head) the fingers can be placed slightly further
from the frets without compromising the sound quality of the note.

Finally, they reported that hand repositioning and finger span
also affect precision. The fingers were placed closer to the frets when
hand positioning was not required and when the fret span was small.

The total time of the experiment, including explanations and
repetitions whenever applicable, was around two hours for which
the subjects were paid £12 each.

Measuring System

A theory is formulated based on the results obtained through logi-
cal reasoning, observations and/or experiments (Dodig-Crnkovic,
2002). The use of a scientific methodology requires that the results
must be reproducible, in the sense that people do not have to believe
the presented data or results; rather they should be able to repeat
the experiment and validate the results by themselves. The selec-
tion of a cost-effective apparatus used in the data collecting is criti-
cal to this matter.

110

One of the most popular pieces of equipment used to track
movements (and speed) is a 3D motion tracking system, such as the
Optotrak 3020 (NothernDigital, 2009). Heijink and Meulenbroek
(2002), Bejjani and Halpern (1989), Shan and Visentin (2003) are
some of the researchers that have opted to use such type of device in
musical performance biomechanical studies. The system is very pre-
cise (0.2 mm in each dimension) but also costly, costing over $60,000.

Although cost is a concern, it is not the only one. In order to
pick up the movement variations, the system requires that markers,
in the form of infrared-light-emitting diodes (IREDs), need to be
strapped on the subject’s joints (Figure 29). This might not be a pro-
blem to a runner or golfer, but the interference of these IRED can
cause in such delicate operations as musical performance is a concern.

Figure 29: Infrared-light-emitting diodes (IREDs) used in tracking systems.
Markers used in conjunction to Optotrak 3020 3D motion Tracking System.

Source: Redrawn image originally available in NOTHERNDIGITAL, 2009.

111

In the Heijink and Meulenbroek (2002) experiment, five IREDs
were taped on the nails of the guitarist, one in the back of the left-
-hand, two in the proximal phalange on the index and middle fingers
of the right hand and three on the body of the guitar. No discomfort
was reported but judging by the manufacturer’s advertising image
(NothernDigital, 2009), illustrated by Figure 29, it is fair to assume
that the device, as big as a fingernail, was likely to interfere in the
guitarist’s abilities to perform. As a result, we have opted to use a less
intrusive and cheaper option: a guitar-like MIDI controller Yamaha
EZ-AG shown in Figure 30.

Figure 30: Yamaha E-AZ Guitar.

Source: Redrawn image originally available at Yamaha - http://www.yamaha.com.

The Yamaha EZ-AG simulates the dimensions of electric gui-
tar however instead of strings the controller has buttons on the fre-
tboard. When pressed, these buttons trigger MIDI messages that are
sent to the Sound Generation Unit.

We developed a bespoke real-time MIDI recorder to interpret
these messages and record not only the speed but also any (precision)
error occurred during the experiment. Most importantly, this piece
of software was able to validate the data informing us in real-time
whether the experiment had to be repeated. Once the experiment

http://www.yamaha.com

112

was finished, the data was saved as a Microsoft Excel compatible file
for further analysis.

Task

The subjects were instructed to perform the chord shapes shown in
Figure 27 throughout the entire extension of the fretboard within
frames of reference that go from first up to the ninth fret (Figure 28).

The use of frames of reference in different regions of the fretboard
serves two purposes. Firstly, it establishes a common ground for com-
parison between the subjects by setting an initial posture for reference.
Secondly, it will allow us to understand the influence that the initial
hand position has in the overall time taken to perform the transition.

As Figure 28 illustrates, the references were set both at the bot-
tom and top ‘strings’ of the instrument. The index, middle, ring and
little fingers of the left-hand had to press and hold their respective
reference positions within a four frets’ range in which the chord was
going to be performed. The speed was calculated based on the time
difference from the moment all four reference buttons were relea-
sed up to the moment all notes (buttons) of the chord shape were
depressed. No right-hand action was required or recorded.

Before the experiment started, the subjects were given a scale
exercise to warm up their fingers and to get used to the instru-
ment. Only when they declared themselves comfortable and apt to
perform the tasks did the recording start. This phase took around
5 to 10 minutes.

The experimenter then asked the subject to set the bottom refe-
rence at the frame [1..4] and ‘jump’ to the first chord shape as fast and
as precisely as he possibly could using a previously agreed fingering.
The procedure was repeated until frame [9..12] was reached, for all
10 chord shapes, from the bottom, and top references. The chord
shape recording order was: C, A, G, E, D, Am, Dm, F, B, and Bm.

113

If the subjects felt the need they were given a few extra minu-
tes to practice the task before the actual recording took place. At the
end of every recording, a preliminary analysis of the data was done
to validate the readings. In case of any undesired abnormality, the
experiment was repeated.

The experiment was paused every 30 minutes for a 10-minute
break or whenever the subject reported fatigue.

Data Analysis

The subjects had to perform ten chord shapes (three times each)
in nine different regions of the guitar, departing from two points
of reference. Even if no mistakes were made, over 10,000 messa-
ges were recorded for every subject. Unfortunately, the MIDI data
transfer is serial and highly subject to latency (up to 7 ms detected in
our setup) so the messages had to be sorted and the latency removed
before analysis, which was done by the custom-made MIDI recorder.

The time taken to perform the chord shape was calculated by sub-
tracting the timestamp of the latest button pressed (representing a note
of the chord) from the timestamp of the earliest reference button release.

The data were recorded continuously per chord shape. If for any
reason the reference is not set properly or not all notes of the chords are
performed then segmentation of the data into individual trials would
be compromised and, as a result, the speed could not be calculated. To
overcome this problem, we developed a simple algorithm to identify a
common pattern of errors on the data, like a note addition or deletion.

The algorithm implements a segmented search on the data that
goes beyond the immediate instance of the pattern that is being sought.
For instance, consider a string sequence ‘B123B234456B456’. The cha-
racter ‘B’ marks the beginning of the three digits numeric sequence (e.g.
‘123’). The first instance is a perfectly formed ‘B123’; the second instance
is ‘B23445’, which has an extra ‘456’. The algorithm does not stop and
proceeds with the search, finding another perfectly formed instance

114

‘B456’. The slot with the error can then be isolated and analysed in detail.
Is the ‘456’ an error of the second instance or a mal-formed third ins-
tance? To answer that we need to identify what we were expecting to
find, which in this case was the instance ‘B456’, hence a ‘456’ is more
likely to be a third instance lacking the reference ‘B’ than three additio-
nal digits of the second instance. This example demonstrates how it is
possible not only the correct measurements of speed but also determine
accuracy (errors) by identifying note addition and exclusions.

There were situations however when automatic identification and
correction of the errors in the data was not possible. Since only three
readings per chord and fret were taken, no automatic outlier removal
strategy could be used. Instead, a manual selection of the value (usually
the median) of each trial was used to calculate the average speed of
the chord shape per fret. The chord shape speed per subject is calcu-
lated as the average time taken to perform the chord shape in all frets.

The overall speed of the chord shape was calculated as the mean
of the chord shape speed for all three subjects. The same rationale
was used to calculate the speed of the individual fingers.

In order to quantify the accuracy of the subjects, we have clas-
sified the errors using a dart target-like system, as seen in Figure 31.

Figure 31: Error coding system.
‘S’ =String, ‘F’ = Fret, ‘+’ = Above or Right, ‘-’ = Bellow or Left.

Source: Own image.

115

In this target-like strategy of classification, every error recei-
ves a code indicating the distance from the target. In the code sys-
tem [S] stands for string, [F] for fret, ‘+’ for top or right-hand side,
and ‘-’ for bottom or left-hand side. As an example, suppose that the
target is the position [2, 3]. If the finger hits the positions [3, 3] and
[2, 3] at the same time, this error is classified as ‘S+’. If there is no
hit for a particular position, then this error is classified as ‘N-’. In the
unlikely event of a hit outside the immediate peripheral area then a
numeral is added (i.e. ‘S+3’).

Of course, this system is only possible if the fingering used by
the performer is known beforehand. Table 6 shows the fingering
adopted by the subjects.

Table 6: Subjects choice of fingering used in Experiment 1.

Chord [string, fret] Subject 1 Subject 2 Subject 3

C
[5,3] Ring Ring Ring
[4,2] Middle Middle Middle
[2,1] Index Index Index

A
[4,2] Index Index Index
[3,2] Middle Middle Middle
[2,2] Ring Ring Ring

G
[6,3] Middle Middle Middle
[5,2] Index Index Index
[1,3] Little Ring Little

E
[5,2] Middle Middle Middle
[4,2] Ring Ring Ring
[3,1] Index Index Index

D
[3,2] Index Index Index
[2,3] Ring Ring Ring
[1,3] Middle Middle Middle

Dm
[3,2] Middle Middle Middle
[2,3] Ring Ring Ring
[1,1] Index Index Index

Am
[4,2] Middle Middle Middle
[3,2] Ring Ring Ring
[2,1] Index Index Index

116

Bm

[5,2] Index Index Index
[4,4] Ring Ring Ring
[3,4] Little Little Little
[2,2] Middle Middle Middle
[1,2] Index Index Index

B

[5,2] Index Index Index
[4,4] Middle Middle Middle
[3,4] Ring Ring Ring
[2,4] Little Little Little
[1,2] Index Index Index

F

[6,1] Index Index Index
[5,3] Ring Ring Ring
[4,3] Middle Middle Middle
[3,2] Middle Middle Middle
[2,1] Index Index Index
[1,1] Index Index Index

Results

The average time for the subjects to perform a chord was around
350 ms. The D chord was the fastest at 248 ms and the B chord was
the slowest taking more than twice as long at 559 ms.

117

Figure 32: Average speed to perform a chord.
The x-coordinates represent the time in milliseconds and the y-coordinates
the chords measured.

Source: Own image.

There are some explanations for the slower performance of the
B chords. Firstly, the palmar pinch used in the barre technique requi-
res a different set of muscle that is stronger and slower. Besides, the B
chord also requires an awkward upper-limb configuration in contrast
to Am and E which are anatomically very comfortable to the subjects.

Secondly, the B chord shape requires a small hand-motion, from
the first to the second fret of the frame of reference. The same applies
to the Bm chord, which is the second slowest. Note that Heijink and
Meulenbroek (2002) have also detected the influence of the hand
repositioning in the speed.

Lastly, the number of digits involved in performing barre-
-chords is greater and as a consequence, the task is more complex. It
must be remembered that the overall speed of the chord is equal to
the speed of the slowest link (digit) of this system, which according
to Freivalds (2004) is the litter finger.

118

Evidence suggesting the retardant effect caused by the use of
the little finger can be found when analysing the fingering used
by the Subjects to perform the G-chord (on average the slowest of
the non-barre-chords). While subjects 1 and 3 used the little fin-
ger in the position (1, 3), Subject 2 preferred to use the ring finger
instead (Table 6).

Figure 33 shows that, proportionally to the readings of the other
chords of the same subject, the G Chord was performed much faster
by Subject 2 than Subjects 1 and 3.

Figure 33: Average speed to perform a chord per subject.
In the barre chart (left) the x-coordinates represent the chords and the y-coor-
dinates the time in milliseconds. The radar chart (right) allow another compa-
rison highlighting the patterns of speed per chord between the subjects

Source: Own image.

By comparing the average speed of the subjects per chord, it is
possible to see that Subject 2 was consistently faster except for the
chords of Am and E. The time variation of all the subjects to perform
these two chords was very small, respectively 36 and 24 ms. Heijink
and Meulenbroek (2002) reported variations in the time domain
among their subjects around 25 ms.

Figure 34 shows the average speed per finger. As previously
suspected, the little finger was indeed the slower one. Surprisingly,

119

the ring finger has shown similar values for all the subjects, being
the fastest finger for Subjects 1 and 3.

Figure 34: Average speed of the fingers when performing the proposed chords.
The x-coordinates represent the finger, where 1 = index, 2= middle, 3 = ring,
and 4 = little; the y-coordinates show the time in milliseconds.

Source: Own image.

Through analysis of the speed of the digits, we could observe
a pattern in the strategy of positioning the finger on the fretboard.
While Subject 2 seems to have made constant use of the index
finger as a guide, Subject 3 preferred to group his fingers before
positioning them.

120

Figure 35: RT and FTL speeds.
The percentage shown in the y-axis is related to the subject average time to per-
form the chord shapes. FTL = First to Last and RT – Reaction time.

Source: Own image.

To help us understand these strategies, the overall time to per-
form a chord shape was decomposed into a) Reaction Time (RT):
the time it takes to configure and move the hand to the region where
chord shape must be performed; and b) First-To-Last note time inter-
val (FTL): the time elapsed from the moment the first and last fin-
ger was actually put into place.

The FTL is an especially important measure because it helps
to reveal trends in the use of the fingers. If the FTL time is small in
comparison to the overall performance time then it suggests that
the fingers are being grouped and then the buttons pressed together.
Conversely, if the FTL time is high in comparison to RT then one
finger may have been used as a guide to set a reference to the fingers.

The guide-finger strategy is something that the classical tech-
nique strongly recommends avoiding. Carlevaro, in 1984, already

121

considered the use of a guide finger obsolete (Carlevaro, 1984, p.79),
but this still seems to be common practise among Jazz guitarists who
adopt a less strict performance technique to match the interpreta-
tional freedom characteristic of the Jazz style. In this technique, the
guide-finger searches for a note of the chord (usually the fundamen-
tal note) and only then are the rest of the fingers laid to form the
chord. From the perspective of the motor control system, the use of
a more precise digit as the guide-finger could help the performer to
build an imaginary image of the fretboard in which the guide-fin-
ger sets a spatial reference for the other (less precise) digits as well
as providing tactile feedback that later can be verified by the audi-
tory or visual senses.

Figure 36: Subject 1 speed of the fingers per chord.
The x-coordinates represent the chords and the y-coordinates the time
in milliseconds.

Source: Own image.

122

Figure 36 shows Subject 2 constantly placing the index finger
firstly at all the non-barre chords. In the case of the barre-chords,
the middle finger was placed first.

Using a radically different approach, we have Subject 3 (Figure
37) who has consistently positioned all the fingers on the fretboard
in a very short time, a technique considered to be more refined. Con-
trast Subject 1, who has not adopted any easily recognisable pattern,
suggesting a cruder technique.

123

Figure 37: Subjects 1 and 3 speed per digit.
The x-axis shows the chords and the y-axis the time in milliseconds.

Source: Own image.

As previously explained, by setting the departure (referen-
ces) and the destination (chord shape) points of the movement we
have attempted to normalise its trajectory allowing a more direct

124

comparison between the subjects. The use of top and bottom refe-
rences attempts to average out possible discrepancies in chords being
performed closer to a reference than another. At this point, the devia-
tion resulted from vertical displacement was not found to be statis-
tically relevant as seen in Figure 38.

Figure 38: Top and Bottom speeds comparison.
The x-coordinates represent the chords and the y-coordinates the time
in milliseconds.

Source: Own image.

Heijink and Meulenbroek (2002) have found that guitarists pre-
fer to keep their joints in the middle of their range when performing.
This is due to the lower cost of this position. We requested the sub-
jects to perform in different regions of the fretboard forcing them
to perform out of the articulations’ preferred range. Indeed, the sub-
jects performed slightly faster towards the middle of the fretboard,
where the elbow and shoulder joints operate in the middle of their
range (guitar sitting on the right leg). The average speed per fret can
be seen in Figure 39.

125

Figure 39: Average speed per fret.
The x-axis represents the fret region and the y-axis the time in milliseconds.

Source: Own image.

Figure 40: Speed and Error correlation.
The x-axis represents the number of errors and the y-axis the time in milliseconds.

Source: Own image.

126

Although the experiments were not designed to prove the existence
of a speed-error trade-off, we could find evidence that Fitt’s law also
applies to guitar performance. As can be observed in Figure 40, the fastest
subject was also the least precise whilst the most precise was the slowest.

According to our results, the B chord was not only slower but it
was also the most difficult to play. From the total errors, 51% were
generated during the performance of the B chord, followed by Bm
and F chords, with 41% and 8% respectively.

It is well established that acquiring barre techniques is a dif-
ficult stage in learning to play the guitar. The strings dig into the
joints and the softer parts of the index finger causing discomfort
(Chapman, 1994, p.78)

Discomfort, however, seems not to be the only factor that could
lead to errors. The Yamaha EZ-AG guitar has buttons instead of
strings and yet the errors only happened during the performance of
the barre-chords (Figure 41).

Figure 41: Proportion of the recorded errors per type.
‘S+’ =hit string above the target, ‘N-’ = note missing, ‘F-’ = hit in fret left to
the target, ‘SF+’ = hit string above and fret in the right to the target, ‘S-’ = hit
string bellow the target.

Source: Own image.

127

From total recorded errors, 41% were from the ‘S+’ type mea-
ning the subjects hit a string above the target. Analysing this figure
further we can find that 87.5% of these errors were on the Bm and
B chords, both using a barre that covers from the 1st to 5th string.

If the subject applies a barre from the 1st to 6th string but does
not pluck the 6th string, this will have little impact in a produced
sonority. Some performers may not even consider it an error at all.
For our system, however, this still counts as an ‘S+’ error. In reality,
78.5% of the ‘S+’ errors in these two chords were caused by the index
finger, used in the barre technique.

Figure 42: Subject 2 probability error rate.
The y-axis shows the percentage of the type errors type per chord.

Source: Own image.

Figure 42 shows the probability of Subject 2 incurring an error
when performing the barre-chords. Note that Subject 2 recorded
the highest number of errors. Bm and B have the same statistical

128

probability of performance errors but the repertoire of errors found
in B chord is much more diverse.

A profile of the error can be drawn based on its location and
the finger used. Table 7 shows all the B chord errors for Subject 2. A
simple analysis can reveal interesting patterns of error. For instance,
all the ‘F-’ errors were caused by the index finger, departing from the
bottom reference, and took place on the first string.

Table 7: Errors recorded from Subject 2.

Error type Subject Finger String Fret Chord Direction

F- 2 1 1 5 B Bottom

F- 2 1 1 7 B Bottom

F- 2 1 1 8 B Bottom

F+ 2 1 5 3 B Bottom

N- 2 4 2 4 B Top

S+ 2 2 5 4 B Top

S+ 2 1 6 3 B Top

S+ 2 2 5 8 B Top

SF+ 2 1 6 3 B Bottom

SF+ 2 1 6 11 B Bottom

Overall, the index finger was responsible for 43% of errors, fol-
lowed by the middle, little and ring fingers with 28, 10, and 2% res-
pectively. It is important to remember that these errors were related
to barre-chords, therefore the index finger had the highest probabi-
lity of erring, having to press 5 or 6 buttons at the same time.

129

Figure 43: Fingers participation on errors.
The x-axis shows the percentage of the finger’s participation in the particular
error types where S+’ =hit string above the target, ‘N-’ = note missing, ‘F-’ =
hit in fret left to the target.

Source: Own image.

Although the little and ring fingers have a smaller contribution
to the total of errors, they were more consistent in a particular type
of error, as seen in Figure 43. All the errors ‘caused’ by the little fin-
ger were from the ‘N-’ type, which one could assume is related to its
lower strength if compared to the other digits.

This shows that errors can not be analysed merely by quantita-
tive terms. In order to truthfully model precision errors, qualitative
aspects of the error must also be considered.

EXPERIMENT 2: FORCE AND POSTURE

The amount of pressure exerted by the guitarist’s finger on the strings
to stop them against the fretboard could impact the quality of the
note produced as explained in the previous chapters.

130

Even though Heijink and Meulenbroek (2002) recognised that
the left-hand fingers must produce relatively large forces, they have
not measured it. In fact, to the best of our knowledge, no specific
study on the guitarist’s strength has yet been published. So, instead
of relying on the data produced by the anthropometric and biome-
chanics community, we had to develop our own methodology and
devices to capture this data.

Even for experts, strength measurement poses some challen-
ges; the scope of the experiment needs to be very well defined. As
Kumar (Kumar, 2004, p.200) observed, any index of human perfor-
mance presents a significant level of variation therefore standardi-
sation in experimental protocols is needed.

One of the first proposals towards the standardisation of hand
movements was the Jebsen Test of Hand Function (JTHF) (Jebsen et
al., 1969). The JTHF is a reference list of hand movements that are
present in the Activities of Daily Living (ADL). As one could ima-
gine, the movements involved in musical performance are not always
as natural as those found in standard daily activities.

Another approach classifies the way the hand is shaped to mani-
pulate objects, known as handgrips. These grips are very generic
and rather simplistic if compared with the movements and postu-
res required to perform on a guitar. Nevertheless, two of them are
undoubtedly present in a guitar performance: a) palmar pinch grip
used in barre-chords; b) tip pinch grip used to play a single note (not
on the open string).

As the name suggests, the pinch grip is characterised by the
junction (opposition movement) of the thumb with any other digit
(pinching). In the context of guitar performance, this grip presents
a small but crucial difference: the left-hand thumb uses the guitar’s
neck as an extension of itself to balance out the ‘pinching’ of the other
digits, possibly all four of them and not just one as would be expected
in a normal pinching grip. The presentation of the barre-chord will
require an even more complex configuration of the hand, merging

131

the palmar pinch grip of the index finger with a multi-tip pinch grip
of the other digits.

Strength can be measured under one of two conditions: dyna-
mic conditions, when the body member is being moved (isotonic or
isokinetic strength), and static conditions, when the force is applied
against a fixed object, with no displacement of the body member (iso-
metric strength) (Sanders and McCormick, 1993, p.216). For this
experiment, the strength will be measured mostly under static con-
ditions but we should not expect the subjects to remain immobile
for the entire recording session.

The configuration of the upper extremity positioning plays a
very significant role in the hand’s strength capabilities (Kumar, 2004,
p.200) so the posture of the subjects should be considered with great
care. The American Society of Hand Therapists even recommends
physically restraining some of the subject’s irrelevant movements.

A less radical proposal was made by Mathiowetz (1985) who
recommends that during hand tests the subject should be seated with
the shoulder adducted and neutrally rotated, 90º elbow flexion, and
forearm and wrist in neutral position (Mathiowetz et al., 1985).

Naturally, limiting the subjects’ movements is not a feasible
option in our context. Although the classical guitar school establi-
shes the ‘correct’ technique to perform the movements involved in
guitar playing, there is a great deal of personal preference involved
in these movements. As we previously explained, human manipu-
lative skills come from an over specified biomechanical system that
allows us to perform similar movements in different ways and we
believe this variation should be measured.

The only option remaining is to also measure the subject’s pos-
tures. Marshall (1999) argues that the joint deviation and limb pos-
ture measurements are as important as the force measurement itself.

In summary, to measure the isometric force exerted by the gui-
tarist’s left-hand fingers we need equipment capable of recording (a)
multiple hand grips using in a (b) dynamic condition scenario, and

132

(c) that allow changes in body postures. Unfortunately, such a spe-
cialised device could not be found so we had to design and build our
measuring device: a dumb guitar equipped with force sensors that
are ‘played’ by the subjects while wearing a skeleton that records their
movements, as detailed in the next section.

Measuring System

In the past, biomechanical/kinematical studies of musical perfor-
mance often required the development of new devices and techni-
ques that would allow the measuring of the biomechanical variables
without disrupting or interfering in the performance itself. Carl
Seashore (Seashore, 1936), one of the first to conduct psychologi-
cal studies of music performance, developed a piano camera system
to record gestural data from hammer and foot-pedal movements.

More recently, these studies have been carried out using a com-
bination of audio analysis algorithms and motion tracking systems, as
Heijink and Meulenbroek and others (Burns and Wanderley, 2006;
Penn et al., 1999; Shan and Visentin, 2003) used in their studies of
violin and trumpet music performance.

As previously observed, the motion track system is very precise
but the placement of the IRED requires special care to not limit the
performer’s movements. This limitation has been solved by Burns
(2006) who developed a method to visually capture the fingering
using multi-camera setup and a finger-tracking algorithm.

Although the camera-based system is very efficient for kinema-
tical measurements, it can not measure force and this is where the
audio analysis usually comes into play. Unfortunately, this is also not
possible in a guitar performance because the amplitude of the sound
is dictated by the right and not the left hand.

In our experiment we have used two independent devices to mea-
sure posture (movement) and strength, respectively a Gypsy6 exos-
keleton and a custom made guitar-like device equipped with Tekscan

133

Flexiforce sensors A201-25 (0-25lbs/11.3kgf) that we have designed and
built. Figure 44 shows a subject trying out the setup for the experiment.

Figure 44: Subject trying the force measuring apparatus.
Setup composed of a Gypsy6 exo-skeleton and FOGU – a specially made gui-
tar that records the coordinate finger’s force production.

Source: Own image.

The Animazoo Gypsy6 Torso motion capture system is a MIDI
skeleton equipped with 18 sensors (16 potentiometers, 2 gyros) with
a resolution of 0.125 degrees each, positioned on the wrist, elbow
and shoulder joints (Animazoo, 2009). A dedicated computer run-
ning a real-time MIDI recorder (the same as the one used in the speed
experiment) saves all the data for further analysis. It is an available
commercial product.

Finding an appropriate device to measure the left-hand strength
in a guitar performance is not an easy task. Penn (1999) said that large

134

muscle groups can be studied using isokinetic fatigue protocols but
an isokinetic device to test small hand muscles is still lacking, there-
fore a more creative approach remains necessary. To investigate the
first dorsal interosseous muscle in pianists, Penn (1999) used surface
electromyography (EMG) but the focus of his study was not speci-
fic to force, but fatigue.

Another possible approach is to equip a real instrument, whene-
ver possible, with thin-film force sensors as Parlitz (1998) has done
in a force-related piano experiment. This film, however, needs repla-
cing after every trial which is not practical.

We designed and built the device used to measure strength; we
called it FoGu (Force Gauge Guitar).

FoGu is a guitar-like device with similar physical dimensions to
a classical guitar, except the neck width, which is 58 mm against the
traditional 52 mm. This increase in width is necessary to accommo-
date the force sensors and, although not ideal, it should not have a
major effect in the force exerted by the hand considering the tasks do
not involve large finger spans. Besides, a seven-stringed guitar and
early baroque guitars use 58-60 mm neck width (Bennett and Dawe,
2001) so this dimension does not make the guitar impossible to play.

The force readings are registered by 18 sensors glued in four
moveable plates that slide along the fretboard locking into pre-es-
tablished positions equivalent to the inter-fret spacing of the clas-
sical guitar. The distribution of the sensors was optimised to use
the fewer possible number of sensors to perform all ten chord sha-
pes (Figure 27).

The dimensions of the plates were calculated based on 9th to
12th fret dimensions of a guitar with the same scale length, res-
pectively: 20.5 mm, 19.5 mm, 19 mm, and 18.5 mm. In the lower
frets, space was left between the plates to simulate the normal
inter-fret spacing. The detail of this sensor distribution can be
seen in Figure 45.

135

Figure 45: Close up view of distribution sensors in FoGu.

Source: Own image.

The electrical output from the sensors was sent to an analo-
gue-to-digital converter - IRCAN Ethersense Interface - through a
series of individual circuits built using 100k resistors to maximise its
sensitivity. The Ethersense interface converts the analogical signal
to digital and sends it to a Max/MSP patch. This patch generates an
OSC (Open Sound Control) message that is captured by a custom-
-built Max/MSP patch (Figure 46). The custom-built patch analysed
the input, mapped the sensors’ output to the chord shapes/fingers
(Table 8) and then recorded the force per finger.

136

Table 8: Sensors mapping to the chord shapes.
The settings used for the Ethersense was: Bit Resolution = 8, Sampling period
= 500 ms and no average filter.

Chord Index Middle Ring Little
C p22 p43 p54
A p43 p33 p23
G p53 p64 p14
E p33 p53 p43
D p12 p13 p24

Dm p22 p33 p24
Am p51 p43 p33

F p61 p32 p53 p43
Bm p51 p22 p43 p33

Figure 46: Max/MSP monitoring patch for the force readings.
The Max/MSP patch that monitors the force reading per sensor.

Source: Own image.

To eliminate possible fluctuations caused by external factors,
all sensors were recalibrated (3 measurements) before every session

137

using weights of 102, 204, 306, 510, 0714, 1000 and 1.510 grams.
Figure 47 shows the setup working during one of the sessions.

Figure 47: Pictures of Experiment 2 – Force and Posture.
On the figure at the top, the computer on the right side records the force mea-
sured by FoGu guitar and the computer from the left records the posture mea-
sured by the Gypsy6 skeleton. The figure from the bottom shows a close up on
an A chord shape being performed in the region of the 9th fret.

Source: Own image.

138

Tasks

Before explaining the task a mention must be made of the use of
Gypsy6 Skeleton. In this experiment, unlike the previous experi-
ments, the subjects had to wear the skeleton, which demands indivi-
dual adjustment and the calibration to the subject’s body. This means
that the value recorded for a particular joint, for example, wrist fle-
xion, is relative to the flexibility of the subject for that movement
(wrist flexion/extension) and a direct comparison between subjects
is not possible.

The subjects, wearing the skeleton, were asked to perform the
same ten chord shapes from the previous experiment in the FoGu
device. They were instructed to apply the force they believed to be
right to make all notes of chords sound clear. The position and force
should be kept for 30 seconds. This process was repeated three times
to every chord shape with a 2-minute interval between the trials.

The use of the 30-second blocks was proposed by Shan and
Visentin (2003) to improve the reliability of their experiment which
aimed to understand the kinematics of violin performance. Three
recordings were recommended by Mathiowetz (1985) because mea-
surements in strength studies are usually not reliable and are subject
to several external inferences. The 2-minute interval is the estima-
ted time required to recover from the 30 seconds sub-maximal mus-
cle contraction (up to 70% MVC).

The subjects could not rely on tactile or auditory feedback as
they would normally do when performing on a normal guitar. The
idea is that they apply the force they are used to and not the maximal
force they are capable of. Any feedback could lead them to adjust the
pressure, applying more or less force than normal.

Each block of 10 chord shapes takes around 1:15 hour to be
recorded. After each block, a 15 minutes break was given to the per-
former while the plates were repositioned to the 5th fret. The same
procedure was repeated after the recording of the second block with

139

the consequent repositioning of the plates to the 9th fret. The total
length of the experiment was 4:30 hours and the subjects were paid
£30 for their participation.

Data Analysis

Even though the posture and force measurements happened at the
same time, the skeleton and FoGu had no synchronisation mecha-
nism. An algorithm was designed to synchronise the datasets but,
initially, they were processed separately.

FoGu Data

At a rate of two readings per second, the total number of events for
the three blocks of 30 seconds each will be 180 entries per chord x
per fret x per subject.

Tekscan, the manufacture of the force sensors, claims a linearity
error of 5%. However, even after conditioning the sensors (a phase
required to make the output constant), this linearity could not be
reached. Unfortunately, Tekscan did not offer support because we
used a sensor reader (IRCAM’s Ethersense interface) from a diffe-
rent manufacturer. Tekscan’s sensor reader is limited to 16 sensors;
hence we opted for the Ethersense interface.

To overcome this issue, the sensors had to be previously calibra-
ted at least three times using weights of 102, 204, 306, 510, 0714, 1000
and 1510 grams before each session. Using a Curve Fitting Toolbox of
Matlab 7.0 the model was fitted to the data and an equation for every
sensor was derived. Figure 48 show some of the equations found.

140

Figure 48: Example of the equations derived from sensor calibration data.
Every sensor has its own equation to transform its output into a kilo-
gram force value.

Source: Own image.

The decision of which model to use was based on common sense
and observation of the researcher, who is familiar with the data and
aware of possible discrepancies and outliers. Norms of residuals and
percentages of variance were also used to support the researcher’s
decision when the model seemed to provide similar fits.

A Matlab script was written to convert all the data, based on the
model generated for every sensor, to the engineering unit of Kgf. As
previously stated, every chord shape used a different group of sensor
and every sensor served more than one finger based on the chord
shape (Table 8). To facilitate the process we requested that the sub-
ject use the same fingering to perform the chord shapes.

Once all the data was processed, then Matlab and Excel were
used to make the statistical analysis and generate the graphs.

Gypsy6 Skeleton

Force and posture were recorded at the same time by two different
computers but without any synchronisation mechanism. The sub-
jects were asked to perform the chord, hold their position for 30

141

seconds, and then repeat twice. The pauses were used as cues for
rough synchronisation. The first step in data analysis was to find the
cues in the MIDI data to differentiate the ‘holding the chord’ state
from the relaxed state.

The Gypsy6 Skeleton sensors are very sensitive. They send a
MIDI message every time they sense a variation of 0.125 degrees, so
even the slightest movement would trigger a message. This is use-
ful in the performance arena but it adds to the communication and
complexity of the task of extracting postures from the data.

As discussed, the limbs can be configured in several ways to
perform a chord shape, and the initial posture selected by the per-
former may adapt and change according to his sensorial feedbacks
and fatigue within the 30 seconds of the trial duration. The adjust-
ment of the angle of one articulation will force the adjustment of all
the other articulations of the limb; therefore average values can not
be used. Instead, all possible postures must be found so the perfor-
mer’s preference can be determined by the frequency these postu-
res are performed. We call these postures Frozen Positions (FPs).

FPs can be found when all the sensors stop sending messages
for a given amount of time, called Time Frame (TF). The smaller
the TF, the higher the number of FPs found. To help us find the FPs
in the data, we have developed a piece of software that searches the
FPs with TFs of 2, 5 and 10 seconds.

We believe that a 10 seconds pause (a third of the total time)
without any motion shows that the performer is comfortable in that
position. If no FP of 10 seconds is found then 5 seconds FP are exa-
mined. If more then one candidate is found, then the frequency of FP
of 2 seconds will be used as the criteria to choose the winner. Note
that all FP are viable configurations; the winning posture is treated
as the preferred but not the only posture.

142

Results

The statistical analysis of the data reveals many interesting hidden
patterns and novelties in the way the tasks are performed but this is
not our goal. The main contribution of this research is related to the
computational side of it, to clarify, an algorithmic solution capable of
identifying the patterns in the data and artificially simulating human
constraints when playing the guitar.

Whatever fact is revealed through the statistical analysis of
the data will not be explicitly coded. These facts and patterns must
be identified through machine learning algorithms, discussed in 0.
The findings presented are merely a guide to verify the efficiency of
such techniques.

Force

Kong and Freivalds (2003) reported that individual fingers do not
contribute equally to force production. In their experiment, they
found that the middle finger is the strongest at 28.7% of the grip force,
followed by the index, ring, and little fingers, with percentage con-
tributions of 26.5, 24.6, and 20.2% respectively. They believe that
the middle finger has an advantage when gripping due to its central
location in the hand.

The results of our force experiments have shown that, for the
particular task of performing chords, the index finger is actually
the strongest, contributing on average 32% of the force generated
in a combined pinch grip. Note, however, that this value has been
pushed up by the barre-chords, using a different type of grip (pal-
mar pinch grip) in which the index finger is highly stressed. The
middle, ring and little finger contributed 30, 21 and 17% respecti-
vely, as seen in Figure 49.

143

Figure 49: Finger average force distribution performing the chords.
The image on the left shows the average force of the fingers (y-axis) in kilo-
gram force per subject (x-axis). The image on the right shows the percentage
per finger of average force produced.

Source: Own image.

The average force the guitarists believed was necessary to pro-
duce a clear note is around 147 grams/f. Subject 2 has once again dis-
tinguished himself from the other subjects by applying double the
force, on average 218 grams/f while subjects 1 and 3 have applied
120 and 105 grams/f respectively.

Since the barre-chords (B, Bm and F) and non-barre chords
(C A G E D Dm Am) require two distinctive hand grips for per-
formance, their results are plotted separately. Figure 50, Figure 51,
Figure 52 show the force applied per digit to perform the non-
-barre chords respectively by Subject 1, 2 and 3. Note that the A
chord is the only one that does not use the index finger and does
use the little finger.

144

Figure 50: Non-barre chords readings for Subject 1.
The x-coordinates represent the fingers involved in the chord execution and
the y-coordinates the force measured in kilogram force.

Source: Own image.

The force data is presented using the Matlab Boxplot. On each
box, the central mark represents the median, the edges of the box are
the 25th and 75th percentiles and outliers are plotted individually.

145

Figure 51: Non-barre chords readings for Subject 2.
The x-coordinates represent the fingers involved in the chord execution and
the y-coordinates the force measured in kilogram force.

Source: Own image.

The visual analysis of the graphs can reveal patterns in the force
distribution when performing the chords. For example, take chord
G. All three subjects exert more force with the ring finger. It is also
possible to notice that Subject 2 is more consistent in the distribu-
tion of the force among the fingers.

The supposed correlation of the fret location and force produc-
tion could not be verified for the non-barre chords. The same is not
true for barre-chords.

146

Figure 52: Non-barre chords readings for Subject 3.
The x-coordinates represent the fingers involved in the chord execution and
the y-coordinates the force measured in kilogram force.

Source: Own image.

For the barre-chords, Subjects 1 and 3 presented significantly
higher force production in the higher frets. Whatever the reason lea-
ding to this behaviour, it did not seem to affect Subject 2. Although
merely speculative at this point, we believe that the extra-force used
by Subject 1 and 3 was an attempt to overcome any difficulty origi-
nating from an awkward posture. The graphs for barre-chords are
presented in Figure 53, Figure 54, and Figure 55.

147

Figure 53: Barre-chords readings for Subject 1.
The x-coordinates represent the fingers involved in the chord execution and
the y-coordinates the force measured in kilogram force.

Source: Own image.

Another interesting observation is that the force produced per
finger on the barre-chords is lower than on the non-barre chords.
In summary, barre-chords are not only slower and less-precise but
also it is more likely to produce muffled and buzzed notes.

In Figure 56 and Figure 57 it is possible to observe the force
applied on every ‘string’ using the barre technique. Observe once
again the difference in the technique of Subject 2 when compared to
the others; Subject 2 manages to apply less force on the lower strings

148

to focus on the bass note. Meanwhile, Subject 1 and 3 apply more
force on the lower strings.

Figure 54: Barre-chords readings for Subject 2.
The x-coordinates represent the fingers involved in the chord execution and
the y-coordinates the force measured in kilogram force.

Source: Own image.

The barre technique is a way to stop several strings using only
one finger. On the Bm and B chords, it is equally important to stop
the 1st string and 5th string using the index finger. On the F chord,
the barre should stop the 1st, 2nd, and 6th.

To produce clear notes, all strings should be stopped, however,
the emphasis given to this by the performer may reveal a particular

149

musical background and use of the right-hand technique. In addi-
tion, considering that the 6th and 5th strings (bass) are under more
tension than 1st and 2nd strings, the overall technique of Subject 2
may be more efficient.

Figure 55: Barre-chord readings for Subject 3.
The x-coordinates represent the fingers involved in the chord execution and
the y-coordinates the force measured in kilogram force.

Source: Own image.

150

Figure 56: Barre’s positions reading for B and Bm chords.
The x-coordinates show the strings pressed in the barre technique the y-coordinates
the force measured in kilogram force. S1 = Subject 1, S2 = Subject 2, S3 = Subject 3.

Source: Own image.

Figure 57: Barre’s positions reading for F chord.
The x-coordinates show the strings pressed in the barre technique the y-coordinates
the force measured in kilogram force. S1 = Subject 1, S2 = Subject 2, S3 = Subject 3.

Source: Own image.

151

In all the previous graphs for barre-chords, the index finger has
always been linked with bass-note for the calculation of the average
force (i.e. in the F chord the index would plot the values of position
[6,1]). However, as can be seen in Figure 56 and Figure 57, the posi-
tion of the bass note is not necessarily where more force is applied.

If the computation considered the maximum force generated
by the index finger regardless of its position in the barre, then the
average accumulated force production for Subjects 1 and 3 would be
considerably greater, as seen in Figure 58.

Figure 58: Accumulated average force.
The image shows the force participation of the finger in chords per Subject,
where S1 = Subject 1, S2 = Subject 2, S3 = Subject 3. The ‘real force’ considers
the index finger maximum force in the barre as to calculate the average, whe-
reas the normal force considers the uppermost position in the barre.

Source: Own image.

152

Positioning

The skeleton used has allowed us to record the slightest variation
in angles of the wrist, elbow and shoulder joints. The average num-
ber of messages sent by each articulation may indicate the workload
needed to perform the task.

The perfect execution of a movement is the result of the balan-
ced effort of all the joints of the limb’s biomechanical system. One
joint can overcome the deficiency of another up to a certain degree;
however, they are all linked. There is no isolated movement when
performing an instrument and finding the right balance will contri-
bute not only towards the mastering of the instrument but will also
reduce the risk of injuries related to the task.

In our experiment, the elbow was the joint that presented the
highest level of motion with 43% of the overall messages, followed
by the wrist and shoulder with 31 and 26% respectively (Figure 59).
These results however can be misleading if we consider the number
of degrees of freedom (df) of each articulation and the number of sen-
sors the skeleton uses to record them.

Figure 59: Articulation activity.
The graph on the left shows the proportion of the recorded articulation acti-
vity (x-axis) per fret region (y-axis). The graph shows the overall average per-
centage of the recorded articulation activity

Source: Own image.

153

The skeleton claims to measure the following movements of the
upper-limb: wrist up/down, wrist spin, elbow up/down, elbow left/
right, arm up/down, and arm left-right. However, the terminology
used by the manufacturer can lead to an incorrect perception of the
articulation in use. For instance, the elbow left/right movement is
achieved by the rotation of the shoulder in lateral/medial rotation.

Table 9: The terminology used to describe movements and articulations.

Movement Articulation Orientation ROM MIDI

Wrist up/down Wrist Flexion 0-90 0

Extension 0-70 127

Wrist Spin Elbow(forearm) Supination 0-90 0

Pronation 0-90 127

Elbow Up/Down Elbow Flexion 0-160 0

Extension 0-145 127

Elbow Side Shoulder Lateral 0-90 0

Medial 0-90 127

Arm Up/Down Shoulder Extension 0-50 0

Flexion 0-90 127

Arm Side Shoulder Adduction 90-0 0

Abduction 0-90 127

Table 9 shows the articulation used in accordance with the ter-
minology adopted by the manufacturer. The ROM column shows
the typical Range of Motion of the articulation by the orientation
(Freivalds, 2004, p.385). The MIDI column shows the value sent by
the skeleton to the appropriate MIDI channel when the articulation
is stationary in either extremity of the movement.

The high level of the combined use of wrist and elbow move-
ment might not come as a surprise to a professionally trained guita-
rist. Interestingly, the level of shoulder articulation decreases toward
the higher frets in comparison with the wrist and elbow (Figure 59).
Note that an important wrist movement (radial-ulnar rotation) is not

154

captured by the skeleton; if this movement had been recorded, the
frequency of the wrist movement would probably surpass the elbow.

As previously stated, the posture data can not be used compa-
ratively among the subjects as the skeleton is calibrated to the sub-
ject’s body; there is no static reference point to measure the absolute
angle of the joint. Hence, instead of comparing the absolute values
of every FP (frozen position) among all subjects, we will compare
the FPs of the chords of a single subject. We elected Subject 2 due to
the better quality of the data recorded.

The data from the arm movements were not considered due to
the low number of messages and constant noise caused by the ope-
ration of the skeleton near the limits of the joint range. Hence the
‘shoulder’ label seen in Figure 60 is related to the ‘Elbow Side’ move-
ment. The ‘forearm’ label identifies the ‘wrist spin’ movement, also
known as forearm rotation movement.

The graphs that are seen in Figure 60 and Figure 61 help the
identification of similarities in the configuration of the articulations
in all three regions of the fretboard. Two attributes need to be obser-
ved: a) the individual value of every movement; b) the overall confi-
guration of the articulations given by the shape of the line.

155

Figure 60: Left upper-limb articulation data of non-barre chords.
The x-coordinates show the articulation and the y-coordinates the respective
angle in which the articulation was configured to perform the chord (see Table
9), P1 = Fret 1, P5 = Fret 5, and P9 = Fret 9 region.

Source: Own image.

156

Figure 61: Left upper-limb articulation data of barre chords
The x-coordinates show the articulation and the y-coordinates the respective
angle in which the articulation was configured to perform the chord (see Table
9), P1 = Fret 1, P5 = Fret 5, and P9 = Fret 9 region.

Source: Own image.

By simply analysing the shape of the lines it is possible to spot
the unique form of the G chord or how much the E and C chords
are ‘biomechanically’ similar. Of course, the values found for these
articulations represent just a small part of a much larger and more
complex biomechanical system. One should recall that the so-called
biomechanical models for guitar fingering only considered the loca-
tion of fingertips on the fretboard which, presumably translates in
a handicapped travel-cost function.

Another way of comparing the biomechanical characteristics of
the postures used to perform the chords is to analyse the ‘intensity’
of the joint deviation. For instance, in Figure 62 it is possible to see
that the B chord demanded a much greater flexion of the wrist than

157

the A or E chords. Of course, the analysis of a single df of an articu-
lation as a measure of similarity between chords can be very dange-
rous. The same A and E chords that presented similar wrist flexion/
extension values are very different under the analysis of the elbow
(forearm) supination and pronation.

Figure 62: Range of values recorded for the movements per articulation.
The x-coordinates show the chords, the y-coordinates a value related to the
angle of the articulation (see Table 9).

Source: Own image.

The posture data, together with the force, speed and precision
data which will be used to attempt to simulate a ‘human’ guitar per-
formance will be discussed in the next chapter.

158

SUMMARY

In this chapter, we have described our methodology to capture and
analyse human performance data in the context of guitar playing.

In the ergonomic and biomechanical field, performance mea-
surements are generally associated with measures of speed or time,
measures of accuracy or error, measures of strength or force. We
have measured these variables in two distinct experiments: a) speed
and precision; and b) force and posture.

Three guitarists of different backgrounds and skills took part
in the experiments. The tasks for both experiments involved per-
forming simple pre-determined chord shapes that have allowed us
to investigate the coordinated effort of the fingers of the left-hand.

In the first experiment, we used a guitar-like MIDI controller
to measure the speed and precision of the subjects performing the
chord shapes. The results for speed showed significant variance in
the performing styles of the subjects.

The average time for the subjects to perform a chord was around
350 ms. The fastest chord took 248 ms with slowest taking as long
as 559 ms. In general, we have found that chord shapes that made
use of the little finger or that demanded a hand motion were slo-
wer. The little finger was the slowest, taking an average to 360 ms
to reach its target.

Trends of errors were also analysed; the fastest subject pro-
duced the most errors. Only barre chords presented errors. 51%
of total errors were generated during the performance of the B
chord, followed by Bm and F chords, with 41 and 8% respecti-
vely. 41% of total recorded errors were related to hitting above
the string targeted.

For the second experiment, we designed and built our own mea-
suring apparatus to record the force produced by the fingers. To vali-
date the force measurements, the configuration of left upper-limb
joints was also recorded using a Gypsy6 Exo-skeleton.

159

The results show that the index finger is the main force pro-
ducer, contributing 32% of the overall force generated. The middle,
ring and little finger contributed 30, 21 and 17% respectively. The
average force produced by each finger was 147 grams/f.

To an extent, the results obtained support the hypothesis that
biomechanical constraints can indeed impact the way the guitarist
performs leading to performance errors. In due course, this will assist
in the development of a computer-generated guitar performance with
a human-feel on it. In the next Chapter, we will discuss the compu-
tational techniques we have used to achieve that.

160

Chapter 5

Guitar Performance
Modelling

Error is discipline through which we advance. (William
Ellery Channing).

The idea of developing computational models of music performance
dates back to the first computer applications. These first models were
mainly dedicated to music production and experimentation (Gareth
and Curtis, 1985).

Like any other musical application, these models had to handle
common musical elements, such as a note, duration ratios between
successive notes, ascending lines, melodic leaps, melodic and harmo-
nic change, phrase structure, et cetera. Although these elements are
essential to the formalisation of any musical application, each deve-
loper used to implement their own solution based on the particular
needs of the application. It did not take long for them to realise that
it would be more productive to have generic library of musical struc-
tures which they could reuse to write their application.

161

All the main programming languages started to provide libra-
ries with some support for music production, even if it is as basic
as a note production based on a frequency. This, however, was not
enough and in the mid 1980’s dedicated programming language for
music started to be produced. One of the first languages to become
popular was the HMSL – Hierarchical Music Structure Language
(Polansky and Rosenboom, 1985; Polansky et al., 1987).

A computer programming language presents an abstract model
of computation that allows one to write a program without worrying
about details that are not relevant to the problem domain of the pro-
gram (McCartney, 2002). These languages are designed to provide a
set of abstractions that makes expressing compositional ideas as easy
and direct as possible (McCartney, 2002). Examples of such langua-
ges are CSound (Vercoe, 1986), MAX/MSP (Puckette, 2002), Super-
Collider (McCartney, 2002), Nyquist (Dannenberg, 1997) to name
a few. Each specialised into some type of musical task: composition,
performance, synthesis and so on.

Still, there is one particular area that has not been explored by
these languages: musical performance modelling. When a language
or application claims to be designed for musical performance purpo-
ses, it is purely a performance tool that is controlled in performance-
-time by the performer, similar to a musician playing an instrument.
This means that the performance actions are still the performer’s res-
ponsibility and not something embedded in language, as one would
expect in a performance ‘modelling’ language. In Section 2.5 (p. 42)
we have seen an example of that with the PwSynth and ENP (Laur-
son, 2000; Laurson et al., 2001).

In a more conventional setup, composers transcribe musical ideas
into a written score in a way it can be understood and interpreted by
another human, the instrumentalist/interpreter. Ultimately, it is the
interpreter’s role to convey all the emotion intended by the compo-
ser to the listeners. This is a task that requires a great deal of sensi-
bility and intelligence that is difficult to be mimicked by a machine.

162

To perform a similar task, a machine would require a much
more detailed specification of the music performance, however
as Gareth and Curtis (1985, p.237) explains, there is just a certain
amount of information that can be formalised.

The importance of formal thinking, in music or in any other area,
cannot meaningfully be separated from the development of for-
mal languages through which that thinking is officially expres-
sed, and unofficially explained.

In music, the active explicit creation of formal languages which
is used to express aspects of theory, performance, or composition,
did not come until the computer made it possible to automate some
aspects of the processing of formal languages (Gareth and Curtis,
1985). The limitations of rules as constraints to a purely formal
approach leave some gaps in the domain of creative, artistic (and
ipso facto informal) endeavour.

This is the point where Artificial Intelligence (AI) meets Music
Performance. Computers can now perform musical tasks that were
formerly associated exclusively with naturally intelligent musicians
(Roads, 1985). However, most of the Expressive Music Performance
models (EMP) do not consider the bodily limitations behind perfor-
mance actions. Even if they did, it would not be possible to formalise
these physical actions using a conventional programming language
for music performance because they do not provide support for this
type of modelling.

To exemplify what has already been discussed, suppose we want
to model a G note using a guitar. In a normal language for music per-
formance, we have to select one of many available guitar timbres, the
note’s frequency (G4), intensity (velocity), and duration.

In a language for music performance modelling, we would pro-
bably have to specify among other things: the string and fret used, the
string tuning, gauge and tension, the guitar scale length, the fretboard

163

inter-fret spacing, the finger used to stop the string and the force
applied to do so, the finger used to pluck the string, nail the plectrum
shape and hardness, the direction of the stroke, its intensity and region.

The example above shows that such approach is just not prac-
tical from the programmer’s point of view. If this level of detail is
going to be modelled, then the language needs to provide a way to do
it effortlessly. This, however, is just part of the problem. One must
also find a Sound Generation Unit capable of taking full advantage of
all of this detailed information and produce a realistic performance.

In summary, in order to model the results of the performer’s
physical actions during a musical performance, two main fronts of
development need to be approached:

1. A programming language/library that offers the level of abs-
traction necessary to detail the performer and the instrument
constraints as well as supporting common musical tasks;

2. An intelligent algorithm capable of learning and predicting
the biomechanical limitations of the human body during a
music performance. This algorithm together with the envi-
ronment mentioned above would save the programmer the
time-consuming task of having to specify every single task
of the performance;

Each of these two topics has its own challenges and they are
described in the first two sections of this chapter. The third sec-
tion will discuss the integration of the machine learning algorithms
with the Octopus Music API: a Java library designed to model musi-
cal performances.

OCTOPUS MUSIC API (APPLICATION PROGRAMMING
INTERFACE)

Computers have been used to perform musical-related tasks in many
different areas such as audio signal processing, score representa-
tion, compositional assistance, and real-time control of the complex

164

processes that go into creating, performing, and analysing music.
However the development of programming languages specifically
for musical applications seems to have concentrated on the areas of
sound synthesis and musical composition (Loy and Abbott, 1985).

According to Loy and Abbott (1985), three strategies have been
commonly employed in the development of musical tools:

1. modifying a composition program written in an existing pro-
gramming language;

2. writing a programming language as the embodiment of a
musical paradigm;

3. developing libraries of utility subroutines that implement com-
mon operations on musical data structures then writing com-
position programs in some standard programming language

The Octopus Music API is an example of the third approach
and, as one can imagine, it is not the only programming library with
a musical purpose. Numerous software packages have been written
for applications in music composition, music analysis, sound synthe-
sis, and sound manipulation (Pennycook, 1985). Unlike other Java
APIs’ for musical software development, the Octopus Music API is
specifically designed to model the interaction of the musical per-
formance elements, mainly the performer and musical instrument.

As a programming library, the Octopus can be used to write
any application that requires dealing with musical structures, such as
composition or musical educational software. As an example of the
possible use for the Octopus Music API, suppose that software has
to play a simple harmonic progression composed of the chords ‘C –
F7 – G’. This is a very simple task; all that the software has to do is to
determine the notes of the chords and play them in a specified tempo
and timbre (i.e. GM guitar). Any musical programming language can
do this with ease. This is what we call the 1st layer of abstraction.

Now, let us add another feature to this software. The harmo-
nic sequence needs to be played with the ‘Admira Concerto Classical’
guitar timbre (standard tuning) using a particular chord fingering.

165

In addition, a particular guitar strumming should be applied. This
2nd layer of abstraction will require a base (harmonic) guitar playing
knowledge and the ability to communicate with a Sound Generation
Unit able to render the particular timbre of that guitar. This layer is
much more specialised than the first, but still possible to be achie-
ved using most musical programming languages as long as the pro-
grammer is experienced and is prepared to work hard.

The 3rd layer is where the specialisation reaches another level. The
software is now requested to play the same sequence using not only
the timbre of ‘Admira Concerto Classical’ but also considering its pla-
yability and mechanics (string gauge, dimensions, tuning, etc). Addi-
tionally, the sequence should be played by a certain flamenco guitarist
named B.B Queen who is left-handed and famous for his peculiar use
of the rhythmic-hand; B.B Queen likes to play the guitar placed on his
right leg and he is slightly anxious with this gig because he never played
this particular guitar before. Facing a demanding audience, B.B Queen
is wondering if he should have rehearsed more rather than dedicated
his last 3 months trying to learn wakeboard in the Caribbean Islands.

The use of layers illustrates the different levels of complexity,
and consequently the amount of coding required to achieve the goals
set. Imagine the amount of recoding that would be necessary if the
guitar or performer had to be replaced. Even worse, imagine if the
harmonic sequence has to be played on a different instrument or even
in an ‘extended instrument’ 4without a formal performance technique.

The Octopus Music API was designed to deal with the 3rd layer
making the most of the Object-Oriented Programming (OOP) con-
cepts, such as encapsulation, polymorphism, and inheritance (Booch et
al., 2007). The API was organised in a way that contemplates its exten-
sion so in the future, it could be extended to model all sorts of musical
performance. The Octopus API design is explained in the next section.

4 Extended instruments are acoustic instruments equipped with sensors and other
customised electronic components designed to extend the instrument capabilities.

166

Octopus Project Design

One of the first decisions to be made once the full requirements of
a software (including a library) have been identified is the selection
of the most suitable technology for the job, in this case, an Objec-
t-oriented Programming (OOP) language with basic support to
audio and MIDI functionalities. We have decided to use the Java
SDK (version 1.5).

One could argue that, compared to languages specially designed
for Computer Music, Java suffers from a slower performance. Indeed
Java sacrifices performance in order to be flexible and portable, allo-
wing the integration of music and sound processing with features
like networking, graphics rendering, mobile devices programming,
database, etc. (Costalonga et al., 2005). Furthermore, Java is free and
widely used in academics.

The Octopus Music API is composed of 80 classes (52 publics)
totalling over 16,000 lines of code. The packages are physically orga-
nised as follows:

Package octopus: The classes in this package represent gene-
ral musical structures, such as Note, Chord, Melody, etc.

Package octopus.instrument: This package contains gene-
ral classes that are useful to all musical instruments modelled within
Octopus. The classes on in this level must be generic enough to allow
the expansion of the API to new instruments.

It is in this level that a more abstract musical structure such as
Melody (package octopus) becomes the more practical PerformableMe-
lody, so rather than only notes in a musical score, the PerformableMelody
contains instructions of how to play the Melody in a particular Instrument.

Package octopus.instrument.fretted: These are specialised
classes for fretted instruments, normally from the Luto family. It is
at this level that we solve some problems related to guitar perfor-
mance modelling. For instance, how to pinpoint a note position in
the guitar fretboard (class GuitarNotePosition).

167

Package octopus.communication: These classes prepare
Octopus for the next step of the research: integration with a Sound
Generation Unit capable of rendering a performance with the level of
detail that Octopus allows. These classes work as a middle-tier commu-
nication protocol to external devices. They are internal descriptors that
can be easily parsed to whatever communication protocol the device
(and Java) supports such as MIDI or OpenSound Control (OSC).

Package octopus.communication.midi: Communication
classes parse the internal performance descriptor into MIDI messages.

Package octopus.util: Miscellaneous utility classes;
More important than the physical arrangement of the classes into

packages is the classes’ conceptual classification. Four categories are used:
1. Musical Data Structures classes (playable): Classes that repre-

sent musical concepts and can be played;
2. Musical Data Interpretation Classes (musicians): Classes capable

of translate ‘playable’ objects (instance of a class) into sound;
3. Instrument Classes: Classes that allow the modelling of the musi-

cal instrument playability attributes (mechanical/ergonomic);
4. Communication classes: Bridge between the Musical Data

Interpretation classes and the Sound Generator Units;

Figure 63: Simplified class diagram for the Musical Interpreters.

Source: Own image.

168

Figure 63 illustrates with a sample class diagram the conceptual
organisation of the classes. The Music class (Data Structure) reali-
ses the Playable Interface and, as a result, becomes ‘playable’ to the
Musician (Musical Data Interpretation). The Performer is a subclass
of Musician, therefore inherits all the musical ‘knowledge’ which is
extended to contemplate the Instrument handling.

The main classes of each of these categories will be discussed
in the next sections.

The full documentation and API (including tutorials) can be
found online at http://sourceforge.net/projects/octopusmusic/.

Musical Data Structures

Generative composition languages usually come with descrip-
tive musical data structures but emphasise compositional pro-
cessing (Loy and Abbott, 1985). With many aspects of music,
we know what to represent, but the issue is how to represent it
(Dannenberg, 1993).

Musical Data Structures are a computational formalisation
of musical concepts that are compatible with other classes of the
API. It includes basic classes such as Note, Melody and RhythmPat-
tern. These classes could be used as part of a hard-coded composi-
tion, as part of an application that generates music algorithmically,
or any other application that benefits from the structural relations
of musical elements.

http://sourceforge.net/projects/octopusmusic/

169

Figure 64: Class diagram for Musical Data Structure.

Source: Own image.

Figure 64 presents a class diagram of some of the structures
modelled in the API. All the Music Data Structures must realise the
Interface Playable, meaning that it can be played by a Musician. The
most obvious examples are: Note, Chord, and Music. A less trivial Pla-
yable structure is the MusicalComponent, which is the abstract class
that any Musical Structure must implement in order to be compa-
tible with Music internal data structure. Although Note(s) and Chor-
d(s) are found in Music, they must first be grouped into Harmony and
Melody structures that implement the MusicalComponent.

Class octopus.Note

Most computer music notations define a musical note as the specifi-
cation of an acoustic event. In the traditional music notation, a Note
specifies a human gesture toward an instrument (Loy and Abbott,
1985). For us, the Note is the smallest audible element that can be
intentionally played or grouped in a musical structure.

170

Although the Note is the simplest musical element of the API, it
has attributes like any other object in the OOP paradigm. The notes
attributes are:

• Name: C Sharp;
• Symbol: C#
• Pitch Value: 64 (midi);
• Octave: C4.
• Accidents: (sharp, double sharp, flat, double flat);

It would be unproductive if every time a Note is required the
programmer had to fill in values to all these attributes. So instead,
we used a software design pattern known as Factory.

Factories are static classes that return highly demanding objects
in a simple form, reducing code overhead. The factory class used to
create and perform computations over Note(s) objects is the NoteFac-
tory. Code Example 1 shows two ways of instantiating Note objects.

Code Example 1: Instantiation of a Note object using the
NoteFactory static class.

Note A = NoteFactory.getA();
Note Ab = NoteFactory.get(“Ab”);

Class octopus.Chord

A Chord is a set of Notes played together or arpeggiated. There are
several ways to instantiate a Chord object but the recommended one
is based on the chord musical notation. The chord musical notation
can be seen as a language with a well defined semantic and syntax to
describe Chords. The API, just like a compiler, runs a lexical analysis
over the text describing the Chord and validates or refuses based on
the alphabet in use. (More information in (Costalonga et al., 2008)

Unfortunately, the chord notation is not standardised all over the
world, meaning that the chord names (symbols) might vary among

171

different communities of musicians. The default ChordNotation using the
API is based on Brazilian Bossa Nova musical genre known by its com-
plex harmonies. If the ChordNotation is not adequate for software that
is being developed than it might be necessary to load another notation
(file). An example of Chord instantiation can be seen in Code Example 2.

Code Example 2: Chord instantiation.

Chord chord = new Chord(“C#m7(add11)”);

The chord object in Code Example 2 is populated by the
Note(s) objects linked to the Interval that describes their role, as
shown in Table 10.

Table 10: Chord’s notes.

Index Interval Note
0 Fundamental(root) Note C#
1 Minor 3rd Note E
2 Perfect 5th Note G#
3 Minor 7th Note B
4 Major 11th Note F#

Two additional pointers are used to indicate the root and the
bass note, which is not the same note in inversion cases. In the exam-
ple given, both pointers are on index 0.

Class octopus.Bar

A Bar is simply a rhythmic phrase. It is a collection of the smallest
rhythmic structure designed in the API. The Bar.RhythmEvent can
be either note or rest with values between 0 and 1 for the duration,
dynamic, and accentuation. The tie attribute is used to indicate whe-
ther the duration of the RhythmEvent should be linked with the next
one in the sequence.

172

The interaction between real-time, measured in seconds, and
metrical time, measured in beats, is frequently addressed in music
representation schemes (Dannenberg, 1993). The time signature of
the Bar is written in the form of a fraction given by the number of rhy-
thmic units divided by the measuring of the unit. The Bar will not pre-
vent the input of RhythmEvents that exceeds the time signature instead,
the bar.getSignatureDistance() method was implemented to inform the
programmer if the RhythmEvents are in accordance with the metre or
not. Figure 63 shows the internal structure of the Bar with an example.

Figure 65: Bar internal data structure.

Source: Own image.

RhythmEvents do not always have to obey the metre. A tuplet
allows the organisation of two of more RhythmEvents in a time frame
(duration) smaller than the total duration of the events in the tuplet. Code
Example 3 shows how to implement the tuplet illustrated in Figure 66.

Figure 66: Example of the score representation for a Tuplet.

Source: Own image.

173

Code Example 3: Tuplet.

Class octopus.RhythmPattern

In the Octopus Music API, the rhythmic line is defined independently
of the Melody or Harmony and it is represented by the RhythmPattern.

Both the Melody and the Harmony can be linked to RhythmPat-
tern. In Melody, the RhythmPattern is mapped to the Notes while in
Harmony it is mapped to the Chords. If the ChordNotes required indi-
vidual rhythmic manipulation (different start time and/or duration)
then the Arpeggio Class must be used, as explained in the next section.

The RhythmPattern is composed of Bars, Marks and Returning
Points. The Bars are inserted sequentially so the order of input must
be observed. Like the Bar, a Mark is placed in a certain position of the
RhythmPattern. Every time that a ReturnPoint is reached, the pointer
goes back to its respective Mark. This loop lasts while the number of
repetitions specified in the Return Point is not achieved.

174

Figure 67 shows the internal structure of a RhythmPattern. In
this particular example, there is a returning point placed after the
third Bar that goes back to Mark M1 three times. Code Example 4
defines the RhythmPattern illustrated by Figure 67.

Figure 67: RhythmPattern internal data structure.

Source: Own image.

Code Example 5: RhythmPattern.
RhythmPattern rhythmpattern = new RhythmPattern();
 Bar bar1 = new Bar(4,4);
 bar1.addRhythmEvent(Bar.QUARTER_NOTE,1);
 bar1.addRhythmEvent(Bar.QUARTER_NOTE,1);
 bar1.addRhythmEvent(Bar.QUARTER_NOTE,1);
 bar1.addRhythmEvent(Bar.QUARTER_NOTE,1);

Bar bar2 = new Bar(2,4);
 bar2.addRhythmEvent(Bar.QUARTER_NOTE,1);
 bar2.addRhythmEvent(Bar.QUARTER_NOTE,1);

Bar bar3 = new Bar(4,4);
 bar3.addRhythmEvent(Bar.QUARTER_NOTE,1);
 bar3.addRhythmEvent(Bar.QUARTER_NOTE,1);
 bar3.addRhythmEvent(Bar.QUARTER_NOTE,1);
 bar3.addRhythmEvent(Bar.QUARTER_NOTE,1);

//placing the bar and setting the return point
 rhythmpattern.insertBar(bar1);
 rhythmpattern.insertMark(“M1”);
 rhythmpattern.insertBar(bar2);
 rhythmpattern.insertBar(bar3);
 rhythmpattern.insertReturn(“M1”,3);

175

Class octopus.Arpeggio

An Arpeggio is a set of RhythmPatterns played simultaneously; it is
used to spread the notes of the Chord throughout its overall duration
(voicing). Often the Arpeggio information is omitted in more popu-
lar musical notations (i.e. guitar tablature) and its use varies upon to
the technique and expressivity of the Performer.

Inside the Arpeggio, the RhythmPatterns (called voices) are orga-
nised in vertical parallel lines, as seen in Figure 68. The lowest voice
(index 0) is linked to ChordNote with the lowest pitch, the second-
-lowest to the second-lowest ChordNote pitch and so on.

Figure 68: Class Arpeggio internal data structure.

Source: Own image.

When a Musician (Musical Data Interpretation Class) is reques-
ted to play a Harmony using a particular Arpeggio, it will adapt the
Arpeggio to the Harmony, repeating or stretching its duration to match
the duration of the Chords. Figure 69 illustrates the ‘time stretching’
feature. Note that even though the C Chord uses the same Arpeggio
as F and G chords, its duration is twice as long.

176

Figure 69: Arpeggio time-stretching feature applied to the Harmony.

Source: Own image.

Code Example 6: Arpeggio.

Code Example 6 shows an example of an Arpeggio with 4 voi-
ces, each of them composed of a 4/8 Bar.

Class octopus.Scale

The scale is a set of Notes that maintains a pre-determined interval
(mode) between them. The Scale class allows the programmer to auto-
matically instantiate several notes of a diatonic (Code Example 7) or
pentatonic scale, which could later be used as melodic fragments.

Code Example 7: B Major diatonic scale.

Scale s = Scale.getDiatonicScale(NoteFactory.getNote(“B”),
 Scale.MODE_MAJOR);

177

Class octopus.HarmonicProgression

A HarmonicProgression is to Chords what a Scale is to Notes. It is a set of
Chords generated according to the degrees (given by Roman nume-
ral) of a user-defined harmonic progression and its key.

Code Example 8: HarmonicProgression in C (key) composed by the chords
respectively represented by the tonic, supertonic (minor), and dominant
seventh degrees.

HarmonicProgression harmonicprogression = new HarmonicProgression(“I -ii -V7”);

harmonicprogression.addScaleDegree(“I”);

harmonicprogression.addScaleDegree(“ii”);

harmonicprogression.addScaleDegree(“V”, IntervalFactory.getMajorSecond());

Chord[] chords = harmonicprogression.getChords(NoteFactory.getC());

The HarmonicProgression class allows the programmer to auto-
matically instantiate several Chords following a harmonic structure
in any key. Code Example 8 shows how to model a Jazz harmonic
progression in the key of C.

Class octopus.Melody

Melody is a set of Notes played sequentially according to a certain Rhy-
thmPattern. The Code Example 9 creates a simple melody.

Code Example 9: Melody.

178

Class octopus.Harmony

Harmony is a set of Chords played sequentially according to an ove-
rall RhythmPattern but respecting the Arpeggios assigned to each chord.

If an Arpeggio is not assigned to a Chord then all the Notes of the
Chord will sound simultaneously and lasts for the duration of the
Chord. The duration of each Chord is the same as the RhythmEvent
associated with it, as previously illustrated in Figure 69.

Code Example 10: Coding a Harmony with 3 Chords that uses two dif-
ferent Arpeggios.

// Instantiate a harmony object with a demo RythmPattern ;

Harmony harmony = new Harmony(RhythmPattern.getDemoRhythmPattern());

// Creates the chords of the harmony

Chord[] chords = new Chord[2];

chords[0] = Chord.getChord(“C”);

chords[1] = Chord.getChord(“F”);

Chord chord = Chord.getChord(“G”);

// Creates the arpeggio to the vector of chords.

Arpeggio arpeggio1 = ArpeggioLibrary.getDemoArpeggio();

arpeggio1.setTimeStratch(true);

//Creates the arperggio for G chords

Arpeggio arpeggio2 = ArpeggioLibrary.getDemoArpeggio2();

//Assing the chords to the harmony.

harmony.addChord(chord, arpeggio1);

harmony.addChord(chords, arpeggio2);

179

Code Example 10 shows how to code a Harmony composed of
three chords and two different Arpeggios. Note that there is no infor-
mation on the Harmony regarding the fingering of Chords (i.e. chord
shapes). This knowledge belongs to the Performer.

Class octopus.Music

Music is normally expressed in terms of pitch (i.e. melody), rhythm
(i.e tempo), and the quality of sound which includes timbre, articu-
lation, dynamics, and texture (Dannenberg, 1993).

In the Octopus Music API, Harmony and Melody (both contai-
ning rhythmic information) are implementations of the octopus.Musi-
calComponent abstracted class.

Figure 70: Class diagram for the MusicComponents.

Source: Own image.

http://en.wikipedia.org/wiki/Pitch
http://en.wikipedia.org/wiki/Melody
http://en.wikipedia.org/wiki/Rhythm
http://en.wikipedia.org/wiki/Tempo
http://en.wikipedia.org/wiki/Timbre
http://en.wikipedia.org/wiki/Articulation_%28music%29
http://en.wikipedia.org/wiki/Articulation_%28music%29
http://en.wikipedia.org/wiki/Dynamics_%28music%29
http://en.wikipedia.org/wiki/Texture_%28music%29

180

Music is a set of MusicalComponents scheduled in time. The time-
line is represented by the Music.Timeline internal class, which is res-
ponsible for indexing the MusicalComponents throughout the duration
of the Music. A class diagram showing the relationship between the
Music and the MusicalComponents is presented in Figure 70.

Figure 71 shows an internal representation of Music composed
with 3 Harmonies and 3 Melodies. Note that H1 and M3 start at the
beginning of the music; hence the index is zero for both objects in
the timeline. The same does not happen to H2 and M1 which was
scheduled to start in a latter time requiring exclusive pointers for
them in timeline table.

Figure 71: Internal musical components organisation over time.

Source: Own image.

181

Code Example 11: Creating a Music with harmony from a HarmonicProgres-
sion and “free notes” melody.

//Create and empty music object

 Music music = new Music();

//Generate the chords based on a harmonic progression of I -ii -V7 in C major.

 HarmonicProgression harmonicprogression = new HarmonicProgression(“Jazz”);

 harmonicprogression.addScaleDegree(“I”);

 harmonicprogression.addScaleDegree(“ii”);

 harmonicprogression.addScaleDegree(“V”, IntervalFactory.getMajorSeventh());

 Chord[] chords = harmonicprogression.getChords(NoteFactory.getC());

//Create a demo RhythmPattern

 RhythmPattern rhythmPattern = RhythmPatternLibrary.getConstantRhythmPattern();

 //Assign the Chords and the RhythmPattern to the harmony

 Harmony jazzyHarmony = new Harmony(chords,rhythmPattern) ;

//Create a melody based on the freeSoloNotes array;

 String[] freeSoloNotes = ;

 Melody melody = new Melody(freeSoloNotes,rhythmPattern);

//Insert the MusicalComponents. Harmony starts at the beginning followed by harmony.

 music.insertMusicalComponent(jazzyHarmony,0.0);

 music.insertMusicalComponent(melody,jazzyHarmony.getDuration());

Code Example 11 demonstrated how Music can be ‘assembled’
using a Harmonic Progression in C Major and free notes soloing.
Note that the melody will only start after the Harmony has finished,
with the timestamp returned by jazzyHarmony.getDuration method.

182

Musical Data Interpreters

A satisfactory realisation of an encoded work can be reconstituted
through the interpretive practice of trained performers, but the kno-
wledge that enables human performers to interpret music notation
is extremely difficult to represent in a formal way (Sundberg, 1980).

Historically, the Western musical tradition has developed what
we now refer to as Common Music Notation (CMN) to provide a
written representation of musical compositions.

One of the key problems is that music notation is not just a
mechanical transformation of performance information. Perfor-
mance nuance is lost going from performance to notation, and sym-
bolic structure is lost in the translation from notation to performance.
It seems that music notation rules are made to be broken (Dannen-
berg, 1993) even if it was designed to serve the needs and processing
abilities of humans (Loy and Abbott, 1985).

 As previously mentioned, the Octopus Music API has its focus
on the modelling of elements involved in a musical performance,
mainly on the Performer and its Instrument. However, rather than
coding each action involved in the performance, the Performer was
programmed to interpret the Musical Structures by itself. In other
words, the programmer does not have to code every minor detail
as illustrated by the B.B Queen example. Instead, the Musical Data
Interpreters classes are used to play the Musical Data Structures.

Mathews (1970, p.272) once said that:

The desired relationship between the performer and the com-
puter is not that between a player and his instrument, but rather
that between the conductor and his orchestra.

If the above quote is true, then who should be responsible to add
expressivity and interpretation to a musical piece? The conductor may
be responsible for directing the overall mood of the piece but surely,

183

he can not oversee every single action of the performers. Besides, as
seen in Chapter 2, performers have their own means of interpretation.

We believe that the interpretation of the musical information
varies according to the knowledge of the Musician and the musical
context where it has been applied. A Musician does not need to play
a musical Instrument to be able to understand music. In the same way,
a percussionist is not less of a Musician for concentrating more on
the rhythmic aspect of the music and less on the melody or harmony.

Figure 72: Class diagram for the Musical Data Interpreters.

Source: Own image.

184

Figure 72 shows the class diagram of the Musical Data Inter-
preters interacting with the Musical Data Structures in different
levels. The first and most basic level of interpretation is the Musi-
cian with musical knowledge but who does not know anything about
playing an instrument.

The Performer inherits all the skills of the Musician and imple-
ments some general monophonic instrumental knowledge. Harmoni-
cPerfomer inherits all the skills of its superclasses and adds polyphonic
instrument handling (Harmony). The Guitarist is a HarmonicPerfor-
mer with expertise in Guitar playing.

Class octopus.Musician

The Musician is an interpreter of the playable musical structures such
as: Scale, Melody, Harmony, Music, RhythmPattern and so on. He knows
how to read and play these structures in the simplest possible way.
No instrument restriction is considered in this computation.

Class octopus.instument.Performer

The information contained in a traditional score is interpreted in
performance time according to a formally incoherent set of rules,
known as performance interpretation (Loy and Abbott, 1985).

A Performer uses the rules of musical interpretation to recons-
titute an acceptable facsimile of the musical idea during the per-
formance (Loy and Abbott, 1985). This suggests that Performers
extends the knowledge of the Musicians with contextualised infor-
mation about the Instrument.

As a subclass of Musician, Performers are also capable of inter-
preting musical structure, but they have to adjust these MusicalCom-
ponents to the characteristics of its Instrument. For instance, when a
Guitarist plays a Harmony he will play it respecting the limitation of the
specific Guitar that is being used, which may sound slightly different

185

when ‘played’ by the Musician, although a Guitarist is ultimately a
Musician. This is known as polymorphism in the OOP paradigm.

All performers can play Melody but the same is not true in regards
to the Harmony. A Performer that can play Harmony is represented by the
class of HarmonicPerformer. Both Performer and HarmonicPerformer are
abstract classes, so they need to be specialised for a particular Instrument.

As previously explained, when a Performer is asked to play Music it
adjusts the musical information to its particular instrument. This ‘lear-
ning’ process generates enriched versions of the Harmony and Melody
musical components, respectively represented by the classes Perfor-
mableMelody and PerformableHarmony. These two classes contain all the
information relating to the performance of the Music using a particular
Instrument such as: articulation, plucking point, chord shapes, et cetera.

Class octopus.instument.fretted.Guitarist

The Guitarist is a HarmonicPerformer that knows how to play the Guitar.
Since the Guitar used in the performance can have a direct

influence in the way the Music is played, the Guitarist needs to ‘know’
beforehand which Guitar they will be playing. In OOP terms, the Gui-
tar needs to be informed in the Guitarist constructor. Code Example
12 demonstrates a Guitarist being instantiated.

Code Example 12 Guitarist instantiation.

…

Guitar guitar = new Guitar(); //create a classical guitar

Guitarist BB_Queen = new Guitarist(guitar); //create the guitarist and assign the guitar to it

 //request the performer to show the InstrumentGraphicalInterface whislt playing.

 BB_Queen. showInstrumentLayout();

BB_Queen.play(music) //play the music

186

As a HarmonicPerformer, the Guitarist knows how to play a Chord.
As previously stated, a Chord can be played in different regions of
the guitar (ChordShape), using different fingering and Arpeggios. This
knowledge was programmed into the Guitarist using a chord shape
similarity function.

The similarity function compares the previous chord shape
with the candidates’ chord shapes of the next chord in the harmonic
sequence. In theory, the more similar the chord shape is to the pre-
vious chord, the lower the effort to move from one to the other (travel-
-cost). The similarity function returns a value between 0 and 1, where
1 means the same chord (Costalonga and Miranda, 2006). The simila-
rity functions used in this work are given by equations system bellow:

A ai j n m ai j fSimP PosA PosB� �
��

�
��
� �

,
:
,

(,)

Pos String Fret NewC Pos OldC Pos� � � � � � �(,), ,

(1)

fSimP PosA PosB
e

fDis PosA PosB

PosA PosB PosA stri

(,) (,),

, : (

� � �

�

1
1

nng PosB string) ()�
(2)

fSimP PosA PosB
e

fDis PosA PosB

PosA PosB PosA str

(,) (,),

, : (

� � �

�

1

2

1

iing PosB string) ()�
(3)

fDis PosA PosB PosA fret PosB fret
PosA fret Pos
(,) () () ,

(()) (

� �

� � �0 jj fret())�0 (4)

fDis PosA PosB

NewC k fret
k

n

n qtOSN

OldC k fret
k

(,)

[][] [][]

�

�

�
�

�
�0

1

��

�
�

�

� � � �

0

1

0 0

m

m qtOSM

PosA fret Pos j fret

,

(()) (())

(5)

187

Equation 1 represents a matrix of m x n elements where m =
number of positions in the chord shape and n = number of positions
in the next chord shape. Similarities of each position are given by
Equations (2) and (3), where e = finger span value. Equation (4) is
used to calculate the distance in non-open chords whilst Equation
(5) is used with open chords, where qtOS represents the number of
open strings used in the chord shapes.

To exemplify, consider an Am chord shape (Figure 73) compo-
sed by the positions[string,fret] [(5,0),(4,2);(3,2);(2,1);(1,0)] which is
going to be followed by a G chord. The first step is to find candidate
chord shapes for the G chord. Some of them are: [(6,3);(4,0);(2,0);(6
,3);(4,0);(3,4)], [(6,3);(5,2);(4,0);(5,10)], [(4,9);(1,10);(6,3);(3,4);(2,3)].

Figure 73: Am chord shape.
The black dots represent the position the fingers should be placed in. The hol-
low circle marks indicated the sting that must he plucked ‘openly’ and ‘x’ the
string that should not.

Source: Own image.

Every candidate chord shape for the G chord will be compared
with the Am chord shape, generating a matrix as shown in Table 11.

188

Table 11: Am to G similarity calculation.

G\A - (5,0) (4,2) (3,2) (2,1) (1,0)
(6,3) - .31
(4,0) .31 .62 .32
(2,0) .31 .62 .31

For every position of G (e.g. pos (6,3)), a value is calculated in
relation to the positions of Am at the same string (Equation 3), one
string above and one string below (Equation 4). For example, the
position (4,0) (4th string open) of the chord G will be compared with
the positions of the 5th and 3rd strings of Am chord shape, respec-
tively position (5,0) and position (3,2).

The similarity between the chords is given by the average of the
highest values of each row. In this example, the similarity is (0.31 + 0.62
+ 0.62)/3 = 0.52. The candidate chords are then sorted by similarity.

The similarity is the main criteria for the selection of a chord
shape but not the only one. The chord shape must also comply with
the rhythmic pattern that is being used. For instance, in the case of
strumming, the chord shapes with open string notes that do not
belong to the basic structure of the chord must be ignored.

Obviously, the first chord shape can not be compared. There-
fore, the selection is made based on the proximity of chord shape to
the guitar head (the lowest fret average values).

It is important to highlight that even though the similarity function
used by the current implementation of the Guitarist is backed up by the
biomechanical theory travel cost proposed by Rosenbaum (1995), it is
not derived from any data collected from the experiments described in
chapter 4. This topic will be discussed in the second part of this Chapter.

The biomechanical study of the guitarist’s right-hand (pluck
hand) is not in the scope of this research. Nevertheless, the Octopus
does provide two classes to allow a detailed formalisation of the right-
-hand techniques (arpeggios): GuitarBar and GuitarArpeggio (Code
Example 13), respectively extending Bar and Arpeggio.

189

Code Example 13: Guitar Arpeggios.

GuitarArpeggio gpr = new GuitarArpeggio(4);

 gpr.setBpm(240);

GuitarBar bs1 = new GuitarBar(4,4);

 bs1.addSingleRhythmEvent(bs1.WHOLE_NOTE,Bar.

 RHYTHM_EVENT_NOTE,1,0,127,

 GuitarBar.FINGERPICKING_THUMB_FINGER);

 gpr.insertBar(bs1,0);

GuitarBar bs2 = new GuitarBar(4,4);

 bs2.addSingleRhythmEvent(bs1.HALF_NOTE,1,2 ,

 bs1.DIRECTION_UP_STROKE,bs1.REGION_INDEX_FINGER,

 bs1.FINGERPICKING_INDEX_FINGER);

 gpr.insertBar(bs2,1);

GuitarBar bs3 = new GuitarBar(4,4);

 bs3.addSingleRhythmEvent(bs1.HALF_NOTE,1,3,bs1.DIRECTION_UP_STROKE,

 bs1.REGION_MIDDLE_FINGER,

 bs1.FINGERPICKING_MIDDLE_FINGER);

 gpr.insertBar(bs3,2);

GuitarBar bs4 = new GuitarBar(4,4);

 bs4.addSingleRhythmEvent(bs1.QUARTER_NOTE,1,4,

 bs1.DIRECTION_UP_STROKE,

 bs1.REGION_RING_FINGER,

 bs1.FINGERPICKING_RING_FINGER);

 gpr.insertBar(bs4,3);

The slightest of the variations in the strokes of a Guitar
Arpeggio is enough to create a whole new Arpeggio. Some of the
stroke’s properties are: direction of the stroke, fingerstyle (PIMA)

190

or pick style modes, plucking point, plectrum hardness and shape,
body slap region, percussive muting, string slap intensity, and plec-
trum attack angle.

The programmer has the option to write the GuitarArpeggio
himself (Code Example 13) or let the Guitarist automatically ‘learn’
the Arpeggio. The automatic conversion of the Arpeggio into Gui-
tarArpeggio takes into consideration if the Arpeggio is meant to be
strummed, arpeggiated, played with a plectrum or using the fingers.
The default is the Classical Finger Style Arpeggio (PIMA).

At the moment, the Guitarist is the only full implementation of
a Performer in the API but this does not mean that the Octopus API
can only be used to model guitar performances. The priority for
the implementation of the Guitarist is in accordance with the ulti-
mate goal of our research. Nevertheless, the extension to the Perfor-
mer class to embrace other Instruments would not be difficult for a
Java programmer.

Instrument Classes

In the real world, musical instruments are classified by different cri-
teria such as the note range or the way they generate the sound (what
vibrates in the instrument to produce the sound). For example, in
an orchestra, the instruments are split into woodwind, brass, per-
cussion, strings.

Hornbostel-Sachs (or Sachs-Hornbostel) is a system of musical
instrument classification devised by Erich Moritz von Hornbostel
and Curt Sachs (von Hornbostel and Sachs, 1961), and first publi-
shed in the Zeitschrift für Ethnologie in 1914. It is the most widely
accepted system for classifying musical instruments by ethnomusi-
cologists and organologists (Lysloff and Matson, 1985).

The Hornbostel-Sachs system is based on one devised in the late
19th century by Victor Mahillon, the curator of Brussels Conserva-
tory’s musical instrument collection. Mahillon’s system was the first

http://en.wikipedia.org/wiki/Sound
http://en.wikipedia.org/wiki/Brass_instrument
http://en.wikipedia.org/wiki/Percussion_instrument
http://en.wikipedia.org/wiki/Percussion_instrument
http://en.wikipedia.org/wiki/Musical_instrument_classification
http://en.wikipedia.org/wiki/Musical_instrument_classification
http://en.wikipedia.org/wiki/Erich_Moritz_von_Hornbostel
http://en.wikipedia.org/wiki/Curt_Sachs
http://en.wikipedia.org/wiki/Musical_instruments
http://en.wikipedia.org/wiki/Ethnomusicology
http://en.wikipedia.org/wiki/Ethnomusicology
http://en.wikipedia.org/wiki/Organology
http://en.wikipedia.org/wiki/19th_century
http://en.wikipedia.org/w/index.php?title=Victor_Mahillon&action=edit
http://en.wikipedia.org/wiki/Brussels

191

to classify musical instruments based on what vibrated to produce
its sound; however, this system was limited to western instruments
used in classical music. The Hornbostel-Sachs system is an expan-
sion on Mahillon’s in which it is possible to classify any instrument
from any culture.

This API adopted the way a Performer interacts with the Instru-
ment as the classification criteria, which resembles the Sachs-Hor-
nbostel system. However, instead of classifying the instruments
based on how they produce the sound (what vibrates), we classify
how the performer manipulates the instrument in order to produce
the sound with it.

For instance, the ergonomics of string-fretted instruments are
very similar. It does not matter whether it is an acoustic classical gui-
tar or a mandolin. The way a performer (normally) interacts with
these instruments to produce the sound is by stopping the strings
against the fingerboard, consequently changing the effective len-
gth of the strings, which in turn changes the frequency at which the
string vibrates when plucked.

This form of categorisation is useful in the context of this book
because it favours the reuse of code. For example, the skills to play
the Guitar are quite different from the skills to play the piano but it
is very similar to the skills to play the mandolin since both are from
the Lute family. Therefore, once an instrument of the Lute family is
modelled, the rest demand little effort to be modelled.

Class octopus.instument.Instrument

The abstract class Instrument establishes the minimum requirements
that a new Instrument must implement to be able to interact with the
other classes of API. This assures the scalability of the API to con-
template new Instruments during its development.

For example, all Instruments of the API must implement an
InstrumentGraphicalInterface that provides visual feedback of the

http://en.wikipedia.org/wiki/Sound
http://en.wikipedia.org/wiki/European_classical_music
http://en.wikipedia.org/wiki/Vibrating_string
http://en.wikipedia.org/wiki/Vibrating_string

192

performance. Figure 74 shows an implementation of such a graphi-
cal interface for the Guitar (class GuitarGraphicalInterface).

Figure 74: InstrumentGraphicalInterface: a graphical interface of the Guitar class.
The 6 rows of the matrix represent the string and the columns the frets. On the
right-hand side, the labels show the strings open tuning. The darker the red,
harder the string has been plucked.

Source: Own image.

Class octopus.instument.string.fretted.FrettedInstrument

The FrettedInstrument Class represents the category of Instruments of
the Lute family. Most plucked string instruments belong to the Lute
family (such as guitar, bass guitar, mandolin, banjo, balalaika, sitar,
and pipa). The lute refers to plucked string instruments with a fret-
ted neck and a deep round back (Lysloff and Matson, 1985).

The Guitar class is a subclass of FrettedInstrument with an overri-
dden constructor to model an acoustic classical guitar with 6 strings
the standard tuning (E, A, D, G, B, E) and 12 frets clear frets.

Communication Classes

Once a musical representation is adopted, issues of transmitting and
storing the representation arise. Transmission, especially in real-time,
raises questions of network protocols, the conventions by which infor-
mation is transmitted and received. Storage raises the question of coding,
or how the abstract information is converted into specific bit patterns.

http://en.wikipedia.org/wiki/Lute
http://en.wikipedia.org/wiki/Guitar
http://en.wikipedia.org/wiki/Bass_guitar
http://en.wikipedia.org/wiki/Mandolin
http://en.wikipedia.org/wiki/Banjo
http://en.wikipedia.org/wiki/Balalaika
http://en.wikipedia.org/wiki/Sitar
http://en.wikipedia.org/wiki/Pipa
http://en.wikipedia.org/wiki/String_instrument
http://en.wikipedia.org/wiki/Neck_%28music%29

193

MIDI is the most prevalent protocol for the real-time transmis-
sion of music information, but it has many weaknesses (Dannenberg,
1993). In a conventional MIDI setup, the controller interface (e.g. ins-
trument) might not incorporate the Sound Generator Unit (e.g. syn-
thesiser) itself, meaning they are two distinct devices. This separation
makes the architecture more flexible once the units can be replaced
to better suit a particular musical task. For example, a guitarist will
most certainly find it easier to play a Guitar-shaped MIDI controller
than a keyboard, which is traditionally the preferred MIDI controller.

Figure 75 illustrates a guitar-like MIDI controller sending MIDI
messages to an independent external synthesiser that convert the MIDI
messages into analogical wave signals that are passed to the speakers.

Figure 75: Conventional MIDI setup.

Source: Own image.

The specialisation of the units into different devices provides
great flexibility but also draw attention to a fundamental element of
the setup: the communication protocol that interfaces the units. The
communication protocol must guarantee that the musical informa-
tion generated in the controller is understood by the Sound Gene-
ration Unit, so it can render the sound accordingly.

194

Every musical instrument has its own means of producing
sound (the mechanics of the instrument). Likewise, performers
use different techniques when playing an instrument. So, how is
it possible to have a standard protocol that contemplates all ins-
truments and playing styles? It is not. The MIDI was designed for
keyboard instruments and this simplification costs the expressive-
ness of performers of other types of instruments. In summary, MIDI
sequencers will always treat musical material identically regardless
of the instrument.

It is important to clarify that the Octopus API does not aim to be
a synthesizer or a communication protocol; instead, it does provide
the programmer with a way to communicate with external Sound
Generation Units.

Normally, musical software would make direct use of program-
ming language libraries to gain access to MIDI or audio devices. This
option can be tricky since it involves low-level programming skills.
Additionally, it would require the programmer to be familiar with
every little detail of the Musical Data Structures classes, which goes
against the concept of encapsulation of the OOP paradigm. This,
however, is an inconvenience and not the main problem.

The main problem is that there is no commercial synthesizer
capable of rendering expressive performances to the level of detail
the Octopus API allows one to model them, as seen in Section 2.5 (p.
42). Consequently, there is no protocol either. So, what communi-
cation protocol should be used in the Octopus API to communicate
with a Sound Generator Unit that does not even exist?

The solution found was the creation of a middle-tier layer that
contains all the performance information but only transmits what
the Sound Generation Unit can handle using whatever communi-
cation protocol it supports. This is where the InstrumentGraphicalIn-
terface comes into play, providing visual feedback of what is not yet
possible to sound.

195

Class octopus.communication.MusicalEvent

Musical data can be either continuous or discrete. Continuous infor-
mation changes over time and is typically represented by digital sam-
pling, splines, or arbitrary mathematical functions. In contrast to
continuous data that fills time intervals, discrete information usually
represents events at a point in time (Dannenberg, 1993).

These events are usually related to the production of a sound,
but the parameters or sub-actions involved in this activity vary from
Instrument to Instrument and also from the capability of the synthe-
sizer to process it.

What should a synthesizer know about a Guitar music perfor-
mance? Is it the same knowledge necessary to render a saxophone
performance? A subset of actions might be the same, but not all.
How is it possible to tell the Sound Generation Unit that the force
applied by the guitarist’s index finger is not enough to render a clean
note or that the string was plucked using a triangular plectrum in an
upward movement?

Even a synthesiser specialised in a particular instrument may
not be able to produce all the sound nuances that performers can
produce with real instruments. Whilst the shape and the hardness
of the pick could be relevant information for a particular guitar syn-
thesiser, to another it could be pointless.

The point we are trying to make is that in the real world the
performer interacts freely with a musical instrument, even in non-
-musical ways. Who has not heard of the famous incident of Jimi
Hendrix setting fire on his guitar 1967 during a concert in Fins-
bury Park Astoria?

In order to provide a way to describe any possible action the ins-
trumentalist might want to perform, the Class MusicalEvent extends
the java.util.Properties. In essence, it is an unlimited collection of attri-
butes that describes the musical actions in any level of detail that the
synthesizer requires to produce the sound with fidelity. Some of the

196

parameters appear quite often so it was decided to make them per-
manent class attributes. They are: note, duration, timing and velocity

Class octopus.communication.MusicalEventSequence

Musical tasks can be described as a sequence of simple actions with
specifiable goals (Pennycook, 1985). A MusicalEvent is no more than
a single atomic musical task. An entire musical piece is likely to need
more than one MusicalEvent.

The MusicalEventSequence is an array of MusicalEvents. It is the
artefact that the Musician generates when requested to play something
because it is the synthesizer that actually plays the Music through the
ShynthesizerController class.

The MusicalEventSequence can also be used to group MusicalE-
vents in order to process them all together. For example, add a delay
in all the events of the sequence.

Class octopus.communication.SynthesizerController

The SynthesizerController is a parser from the MusicalEventSequence to
whatever protocol is used to control the synthesizer. The standard
protocol supported by Java is still MIDI, so MidiSynthesizerControl-
ler realises the interface SynthesizerController to parse MusicalEvent
into MIDI messages.

The MidiSynthesizerController is able to communicate with exter-
nal devices through the MIDI ports. In Java, this is achieved by con-
necting transmitters (MIDI OUT) to receivers (MIDI IN), just like
you would do it with a cable.

To deal with the particularities of guitar performance, a Gui-
tarMidiSynthesizerController was designed to convert guitar perfor-
mance information into MIDI messages. This conversion implies a
loss of precision because, as previously explained, the MIDI was not
designed for guitar usage.

197

Justice needs to be done: MIDI would not have been the stan-
dard communication protocol for digital musical instruments for
the last 20 years if it was not a well-designed solution. To over-
come the lack of native support for some instruments, the MIDI
specification proposes the use of System Exclusive Messages (SysEx-
Messages) to extend the functionalities of the protocol to specific
devices/manufactures.

The GuitarMidiSynthesizerController makes wide use of SysEx-
Messages to communicate all the performance actions. However, this
is only helpful if the device (receiver) could interpret these messa-
ges. Unfortunately, such a device does not exist yet.

To verify the functioning of the solution, we implemented the
GraphicalGuitarMidiReceiver class. This class is used to decode the
SysExMessages and provide visual feedback using the GuitarGra-
phicalInterface (Figure 74, p. 160).

MACHINE LEANING (ML)

Data analysis techniques derive either from standard statistics or
computer science. While Machine Learning (ML) has been more
concerned with formulating the process of generalisation, the statis-
tics focused on testing the hypothesis (Mitchell et al., 1990).

The objective of ML is to find computationally efficient solu-
tions to data analysis problems and make intelligent decisions based
on data. Like most of the AI applications, machine learning tech-
niques have been used in non-deterministic domains that require
prediction, forecasting, diagnosis, or decisions involving human judg-
ment (Luger, 2002, p.50). Their outcome suggests that something is
probable, but not necessarily true.

To select an appropriate learning algorithm, it is important to
have in mind what must be ‘learnt’ from the data and how this kno-
wledge will be used to draw conclusions. Witten and Frank (2002,
p.38) classify the learning styles into:

198

Classification (Supervised) Learning: A learning scheme
takes a set of classified examples from which it is expected to learn a
way of classifying unseen examples. It is supervised because the suc-
cess is subjectively measured by humans or objectively by comparing
with a set of examples not used in the learning stage.

Association Learning: Any association between features is
sought, not just ones that predict a particular class value. Associa-
tion learning differs from classification learning by seeking some
interesting structures in the data that could be used as an association
rule to predict any attribute (even more than one), and not only the
class. Association rules usually involve only non-numeric attributes
and demand a high number of examples and high accuracy levels in
the data (95% accurate).

Clustering: Groups of examples that belong together are
sought. Used when classes cannot be easily identified and it seems
that the elements of the group fall naturally together. The success of
clustering is measured subjectively in terms of how useful the result
appears to be for human use. It can be combined with classification
learning to find intelligible descriptions of how new instances should
be placed into the clusters.

Numeric Prediction: The outcome to be predicted is not a
discrete class but a numerical quantity. A variation of the classifica-
tion learning when the outcome is a numerical value rather than a
category (Mitchell et al., 1990). In this type of learning, the empha-
sis is on the importance of the attribute and how it relates to the
numerical outcome.

Another aspect to consider when selecting an ML technique is
the interpretability of the outcome of the learning (concept) to the
human eye. The knowledge can be represented as a ‘black box’, whose
internal mechanisms are effectively incomprehensible, or a transpa-
rent box whose construction reveals its structural patterns (Witten
and Frank, 2002, p.3).

199

Structural patterns explicitly capture the decision structure. It
can be described as one rule, a set of rules or decision tree, for ins-
tance. Not all machine learning methods produce easily understood
structural descriptions. Neural Network (NN), for example, learns to
classify new examples in ways that do not involve explicit structural
descriptions of the knowledge that is learned. If the explanation is
the main goal of the data analysis, Neural Nets is not a good choice.

Learning Strategy - Which Learning Algorithm Use?

An important objective of this research is to attempt to predict errors
in guitar performances. Previously, we have discussed some of the
errors that are expected to happen during a performance, such as: a)
delays; b) note additions, deletions and substitutions; c) buzzed and
muffled notes. These errors are believed to be correlated respecti-
vely to: speed, precision and force.

In Chapter 4 we have described two sets of experiments to mea-
sure: a) speed and precision; and b) strength and posture. The data
collected is mainly numerical, which will either limit the selection
to numerical prediction algorithms or will demand a pre-processing
stage of discretization.

We have also explained that the experiments were recorded
independently, which resulted in separate data sets with different
attributes, each containing values with different ranges. Also, each
data set has its particularities that suit a different type of algorithm.

Table 12 shows some of the characteristics of the datasets that
must be observed in order to choose a suitable learning algorithm.
For example, Neural Networks can handle numerical attributes, is
not so susceptible to outliers (noise) but overfits if insufficient exam-
ples are provided.

200

Table 12: Strength, precision, speed, and posture data characteristics.

Data Noisy Numeric Few examples Nº Classes

Strength 3..4

Precision 0..N

Speed 1..4

Posture 4

In ML terms, the input takes the form of concepts, instances,
and attributes. Concepts are what we are trying to find. They must
be intelligible and operational, so that they can be understood, repre-
sented symbolically (e.g., in terms of Octopus Music API, as discus-
sed above) and applied to in the real world.

The instances are examples. Each instance is an individual exam-
ple of the concept to be learned and it is characterised by the values
of its attributes (Witten and Frank, 2002, p.38). The attribute that
is to be predicted is known as the class of the example (not be con-
fused by OPP class definition).

Normally, algorithms for numerical prediction work in a single
class scenario, not in a multi-class; in this work, our goal is to predict
not only the speed and force used by the hand during a chordshape,
but the speed and force of every finger involved in the task. Hence,
the data needs to be partitioned in a way that can feed several models.
The selection of the attributes can be complex under these circums-
tances even if the models share the majority of them.

As previously explained, the hand biomechanical system is a
dynamic system where the slight motion of a single finger can disturb
the whole balance of the hand configuration so, ideally, the models
should not be completely independent. Additionally, some learning
schemes will work better in certain portions of dataset than others.
Thus, choosing a single general learning scheme that will work all-
-round is a challenging task that demands a significant amount of
trial and error.

201

The strategy consisting of trying several learning algorithms
in a data set to select the best one is often called a toolbox approach
(Freitas, 2002, p.10). We have used Weka 3.6 to assist us in per-
forming this task.

Weka is a comprehensive tool bench for machine learning and
data mining. It is an open-source project coded in Java, which pro-
vides easier integration with Octopus Music API. The advantage of
using a package like Weka is that a whole range of data preparation,
feature selection and data mining algorithms are integrated. This
greatly facilitates the performance comparison of the different lear-
ning algorithms. Nevertheless, there are disadvantages too.

Weka does not implement the latest techniques and the docu-
mentation is quite limited. For this work, we would rather see Weka
as a filter that will narrow the options of machine learning approa-
ches that could be potentially successful with our data. Nonetheless,
customisation of the algorithms might still be necessary.

The question of which is ‘the best’ learning scheme is very sub-
jective. The truth is that there is no universally best learning method
(Freitas, 2002, p.32). It all depends on the selection of the attribute
and the descriptive power of the examples.

To demonstrate the goodness-of-the-fit of the predictions made
with different algorithms, we use the same performance measures
that are commonly found in the ML literature. They are:

Root Mean-Squared Error (RMSE): The Mean-Square error
is the principal and most common way to quantify the difference
between the actual value (a) and the true value of the quantity being
predicted (p) in linear regression models. The square root is taken
to give it the same dimensions of the predicted value itself.

RMSE p a p a
n

n n�
� � � �() ... ()

1 1

2 2

Mean Absolute Error (MAE): The Mean Absolute Error is
the average of the absolute error (p –a). It is an alternative to RMSE

202

with the advantage of not being susceptible to outliers, once all sizes
of error are treated evenly according to their magnitude.

MAE
p a p a

n
n n�

� � � �
1 1

..

Relative Absolute Error (RAE): Sometimes it is the relative
rather than absolute error values that are of importance. For exam-
ple, if a 10% error is equally important whether it is an error of 50
in a prediction of 500 or an error of 0.2 in a prediction of 2. This is
our preferred measure because it allows us to compare prediction
performance for all the subjects.

RAE p a p a
a a a a

n n

n

�
� � � �
� � � �

() ... ()

() ... ()

1 1

2 2

1

2 2
, where a

n
aii

Correlation Coefficient (CC): Measures the statistical correla-
tion between the actual values (a’s) and the predicted values (p’s). The
correlation coefficient ranges from 1 for perfectly correlated results,
through to 0 when there is no correlation, to -1 when the results are
perfectly correlated negatively, which should not occur for reaso-
nable prediction methods. We use it as a complementary measure.

CC S
S S
PA

P A

= , where S
p p a a
nPA

i ii�
� �

�
� ()()

1
, S

p p
nP

ii�
�

�
� ()2

1

and S
a a
nA

ii�
�

�
� ()2

1

For classification problems, we also report the percentage of
correctly classified instances. All the formulae were extracted from
Witten and Frank book (2002, p.148).

Machine Learning Algorithms

It is outside the scope of this research to discuss the details of the
machine learning algorithms used to model speed, force or precision

203

data. Nevertheless, we will use this section to briefly explain some of
the main ideas behind the algorithms we have used and the rationale
for using them. We have mainly used three approaches: a) Instan-
ce-based (IBK); b) Decision Table; and c) Trees for numeric predic-
tion (REPTree and MP5).

Let us start presenting the instance-based K-nearest Neighbours
classifier (IBK). The nearest-neighbour method was adopted as a clas-
sification scheme in the early 1960s and has been widely used in the
field of pattern recognition for almost five decades.

Fix and Hodges (1951; Silverman and Jones, 1989) performed
the first analysis of the nearest-neighbour scheme, and Johns (1961)
pioneered its use in classification problems. Nearest-neighbour
methods gained popularity in machine learning through the work
of Aha (1991), who showed that instance-based learning can be
combined with noisy exemplar pruning and attribute weighting,
and the resulting schemes perform well in comparison with other
learning methods.

The term nearest-neighbour is normally used in statistical pat-
tern recognition literature, whereas the term instance-based lear-
ning is typically used in the machine learning literature (Freitas,
2002, p.59). Instance-based learning however does not only include
the nearest-neighbour methods but also the locally weighted regres-
sion method that assumes instances can be represented as points in
Euclidean space (Freitas, 2002, p.230).

Learning for these algorithms consists of simply storing the pre-
sented training data. When a new query instance is encountered, a
set of similar related instances is retrieved from memory (using a dis-
tance function) and used to classify the new query instance. This is
a peculiar learning strategy in which the search proceeds from spe-
cific to general rather than from general to specific as in the case of
tree or rule induction (Freitas, 2002, p.201).

Like any other learning scheme, instance-based algorithms
do have some disadvantages. One of them is that performing the

204

selection of similar examples in real-time can be slow. This howe-
ver can turn into a positive when the model needs to be expanded
constantly, such as when modelling live human performance.

Another disadvantage is that instance-based algorithms can be
susceptible to outliers, meaning that the examples must be good.
There is an old Computer Science saying for that: “Garbage in, gar-
bage out”. No matter how intelligent a data mining algorithm is, it
will fail to discover high-quality knowledge if it is applied to low-
-quality data (Freitas, 2002, p.201). Some algorithms can handle noisy
data better than others but outliers are never good for machine lear-
ning algorithms.

Fortunately, there is a way to alleviate the impact of outliers in
instance-based methods and that is exactly what IBK does; it uses
several similar (neighbours) examples to classify a new instance. In
our case, we have used 3KNN (K-Nearest Neighbours) because we
have 3 measurements per chord during the data collection stage. The
influence of the neighbours in the final prediction was weighted using
a standard 1/distance function.

Indeed, the IBK performed very well with our data. A t-test
comparison of the IBK with other very popular schemes for nume-
ric prediction have shown there is a statistical significance5 (p < 0.05)
in the RMSE of the IBK and the others schemes when predicting the
time for the ‘first arrival’ of the non-barre chords data for Subject 1,
as can be seen in the Comparison 1. This superiority could be veri-
fied in all the arrivals, with all the chords and subjects.

5 The statistical significance is indicated in the Comparisons by the letter “v”
in front of the RMSE results. The “*” indicates no statistical significance.

205

Comparison 1: IBK, MLP, MP5 and Linear Regression for Subject 1 Non-
-barre First Arrival.

Tester: weka.experiment.PairedCorrectedTTester

Analysing: Root_relative_squared_error

Confidence: 0.05 (two tailed)

Dataset (1) lazy.IBk | (2) trees (3) funct (4) funct

--

NB_t-weka.filters.unsuper(100) 11.23 | 74.16 v 93.35 v 93.88 v

--

 (v/ /*) | (1/0/0) (1/0/0) (1/0/0)

Key:

(1) lazy.IBk (Instance-base)

(2) trees.M5P (Model Tree)

(3) functions.MultilayerPerceptron (NN)

(4) functions.LinearRegression

In the first three lines of the Comparison 1 box, we can see the
type of the comparison test used (T-Tester), the type variable that
was analysed (RMSE), and the confidence (0.05). The bottom lines
(key) show the algorithms that were compared (IBK, MP5, MLP,
and LR). However, it is in the middle lines that we can see the indi-
vidual RMSE per algorithm and if they are statistically significant
(represented by a ‘v’) of not (represented by a ‘*’). All the compari-
son boxes will use the same layout.

In this particular comparison, we can see that the IBK have
an RMSE of 11.23 which is statistically different from the other

206

results. All the comparisons use a 10 x 10 cross-validation for trai-
ning the models.

Even though the results of IBK have shown some impressive
potential for prediction on this particular dataset, it has its limita-
tion. The IBK considers all attributes of the instances when attemp-
ting to retrieve similar training examples from memory. If the target
concept depends on only a few of the many available attributes, then
the instances that are truly most similar may well be a large distance
apart (Freitas, 2002, p.231).

One approach to overcome this problem is to weigh each attri-
bute differently when calculating the distance between two instan-
ces or, more drastically, even eliminate the least relevant attributes.
However, as we increase the number of degrees of freedom available
to the algorithm for redefining its distance metric in such a fashion,
we also increase the risk of overfitting (Freitas, 2002, p.235).

A more sensible approach is to combine the strengths of dis-
tinctive machine learning schemes that perform well in poles apart,
complementing each other. For numerical prediction, we have cho-
sen two other learning schemes: a simple decision table majority clas-
sifier and an M5 Model Tree.

A Decision Table is one of the simplest hypothesis spaces possi-
ble, and usually, they are easy to understand. It is a precise yet com-
pact way to model complicated logic.

Experimental results have shown that on artificial and real-
-world domains containing only discrete features, an algorithm
inducing decision tables, can sometimes outperform state-of-the-
-art algorithms such as C4.5, which is often considered one of the
best of its kind (Kohavi, 1995). This, however, does not mean that
it will not perform well with continuous numerical data if appro-
priately discretized. In fact, performance is quite good on some data-
sets with continuous features, indicating that many datasets used in
machine learning either do not require these features or that these
features have few values.

207

Creating a decision table involves selecting some of the attri-
butes that best represent the class. The prediction will be as good as
the selected group of attributes allows it to be. The implementation
of the Decision Table that we have used considers the RMSE as an
evaluation measure and use Best-First (forward) to search for the
‘best’ subset of attributes.

In our dataset, the attributes found to be most relevant for the
‘classification’ of the ‘time of the first arrival’ (tFist) were: the fret,
the vertical displacement of the index (IVD) and ring (RVD) fingers,
as can be seen from the ML Example 1.

208

ML Example 1: Classification table on Subject 1(Non-barre/1st arrival)

Decision Table:
Number of training instances: 378
Number of Rules: 126
Non matches covered by Majority class.
 Best first.
 Start set: no attributes
 Search direction: forward
 Stale search after 5 node expansions
 Total number of subsets evaluated: 31
 Merit of best subset found: 7.37
Evaluation (for feature selection): CV (leave one out)
Feature set: 1,2,6,8
Rules:
===
Fret IVD RVD tFirst
===
‘(8.2-inf)’ ‘(0.4-1.3]’ ‘(3.1-inf)’ 466.6666666666667
‘(7.4-8.2]’ ‘(0.4-1.3]’ ‘(3.1-inf)’ 191.33333333333334
‘(6.6-7.4]’ ‘(0.4-1.3]’ ‘(3.1-inf)’ 158.33333333333334
‘(5.8-6.6]’ ‘(0.4-1.3]’ ‘(3.1-inf)’ 177.33333333333334
‘(4.2-5]’ ‘(0.4-1.3]’ ‘(3.1-inf)’ 196.66666666666666
‘(3.4-4.2]’ ‘(0.4-1.3]’ ‘(3.1-inf)’ 174.0
...
Time taken to build model: 0.67 seconds

=== Predictions on test data ===

 inst# actual predicted error
 1 221 219 -2
 2 264 267.5 3.5
 3 256 243 -13
 4 179 176.5 -2.5

209

...
=== Summary ===

Correlation coefficient 0.9965
Mean absolute error 5.8042
Root mean squared error 7.6928
Relative absolute error 8.1887 %
Root relative squared error 8.298 %

ML Example 1 shows a simulation Decision Table. The top lines
show the general parameters used to run the algorithm. The ‘rules’
section shows part of the rules found (126 in total) but, most impor-
tantly, it shows how the numerical data was discretized. This is fol-
lowed by example ‘predictions’ and then the ‘summary’, where the
performance measures are displayed. An RAE of 8.1% with a 0.99
correlation coefficient is a very good result, even better than the IBK
despite being a radically different approach.

There is another learning strategy that must be considered
when predicting numerical values. In reality, it should have been
the first to be considered because all the attributes are numerical:
the regression approach.

The classical way of dealing with continuous prediction is to
write the outcome as a linear sum of the attribute numeric values
with appropriate weights (regression equation). Although linear
regression is an excellent scheme for numerical prediction, widely
used in statistical applications, it has the disadvantage of linearity
(Witten and Frank, 2002, p.114), in which case a Neural Network
would be a more appropriate approach.

Neural nets are commonly used for predicting numerical quan-
tities, although they suffer from the disadvantage that the structures
they produce are opaque and cannot be used to help understand the
nature of the solution. Although one can gain some insight from plot-
ting the marginal effect of predictors, the NN inevitably introduces

210

complex interactions that often do not reflect reality. Furthermore,
without careful control, the NN can easily overfit the data resulting
in over-optimistic predictions.

 A third option is the trees for a numerical prediction that mix
linear regression with decision trees which make them more accurate
than a simple linear regression. There are two main types of numeri-
cal trees: a regression tree and a model tree, respectively implemented
in Weka by the REPTree and MP5. The main difference between a
regression and model tree is that the latter finds one regression equa-
tion per whilst the former use just one for the whole tree .

All three approaches were tried and although none have proven
to be particularly effective for the speed dataset, we believe that the
suitability of regression approach for numerical prediction can not be
ignored. A comparison (Comparison 2) between these three regres-
sion approaches has shown that the regression (REP) and model tree
(MP5) perform better than the simple linear regression and Neural
Network Multilayer Perceptron (MLP).

211

Comparison 2: Numeric Trees, Linear Regression, NN MLP comparison.

Tester: weka.experiment.PairedCorrectedTTester

Analysing: Root_relative_squared_error

Datasets: 1

Resultsets: 4

Confidence: 0.05 (two tailed)

Dataset (2)REPTree | (1) MP5 (3) LR (4) MLP

NB_t-weka.filters.unsuper(100) 66.95 | 74.16 93.88 v 93.35 v

 (v/ /*) | (0/1/0) (1/0/0) (1/0/0)

Key:

(1) trees.M5P (Model Tree)

(2) trees.REPTree (Regression Tree)

(3) functions.LinearRegression

(4) functions.MultilayerPerceptron (Neural Net)

The RMSE between the two types of numeric prediction trees
was not statistically significant at 66.95 and 74.15 RSME. We have
therefore opted to use the MP5 model tree because it performed
slightly better overall and produced smaller trees.

212

Figure 76: Part of the MP5 Model Tree for Subject 1(Non-barre/1sr Arrival)

Source: Own image.

Figure 76 shows a branch of a tree constructed with MP5 algo-
rithms for Subject 1 (Non-barre/1st arrival) and one of the linear
models (LM) used to predict the speed value of that particular leaf.
For example, the Linear Model 36 (LM36) only applies for a scenario
in which the ring finger is not moving downwards over two strings
(RVD > -1.5) and the Fret > 8.5.

Experience has shown that combining the predictions from mul-
tiple methods often yields more accurate and robust predictions than
can be derived from any one method (Witten and Frank, 2002). To
do so, we need to use a meta-learning scheme.

We have used two different meta-learning schemes: Stacking
(Seewald, 2002) and Bagging/Voting (Kuncheva, 2004), respectively
applied to numerical and classification uses.

In stacking, the predictions from distinct classifiers are used as
input into a meta-learner, which attempts to combine the predictions
to create a final best-predicted classification. Hence, in our proposed

213

solution, the used predictions from three classifiers (IBK, MP5 and
Decision Table) as input variables into a Linear Regression meta-
-classifier, which attempts to ‘learn’ from the data how to combine
the predictions from the different models to yield maximum classi-
fication accuracy.

The concept of bagging (voting) is commonly used to address
the inherent instability of results when applying complex models to
relatively small data sets (Statsoft, 2009). As we have discussed, lear-
ning schemes will perform differently for different dataset. In small
data sets, this variation can be extremely high, raising the recurring
question of which learning scheme to use. Bagging (voting) solves
this issue democratically: voting, as the name says.

The final classification is the one most often predicted by the
different schemes, which in our case are: Random Forest (Brei-
man, 2001), Random Committee/Random Tree (Dietterich,
2000), and IBK.

Both Random Forest and Random Committee are already meta-
-schemes by themselves and use their own strategy to select the best
classifiers. Their classification strategy will not be discussed because
the decision to use them was purely based on performance rather
than on their suitability to the data. The Bagging (voting) meta-lear-
ning scheme only performs well if all the inner-schemes also perform
well. Hence, we selected the three that performed best.

A Note on Data Preparation

Real data is often of disappointingly low quality (Witten and Frank,
2002, p.48). Preparing input for data mining investigation usually
consumes the bulk of the effort invested in the entire data mining
process. According to Cabena, Stadler et al (1998), data preparation
accounts for up to 60% of the effort in data mining.

In the following sessions, we will present how the Speed,
Precision, Posture and Force data were prepared to suit different

214

learning schemes. However, there is one key difference worthy of
mentioning first:

In Section 4.3 (p. 106) we explained that strength can be mea-
sured under static (isotonic) or dynamic conditions (isokinetic). In
our experiments, we have measured them under static conditions,
in other words, the subjects were not really performing during the
measurement but rather applying pressure in a shape of a chord over
a measuring tool that resembles a guitar. For this reason, the exam-
ples used to model force and postures are merely descriptors of chord
shapes. Any other kinetic attribute that may impact force (i.e. speed)
is not used in the example.

Contrastingly, speed and precision were recorded under dyna-
mic conditions. The subjects had to move from the reference position
to the established chord shape position, therefore it is the movements
and not the chord shapes that are used as examples in this scenario.

More details of movement and chord shape descriptors will be
provided in context throughout the next sections.

Modelling Chord Speed

Given two chord shapes, how long does it take to move from one
to another? If this time is greater than specified in the music score
then a delay is likely to occur.

Delays, like any other error, can be caused either by cognitive
(e.g. timekeeping mechanisms discussed in section 2.3.4, p.34) or
biomechanical (e.g. muscle speed discussed in section 3.2.3.3, p. 79)
constraints. Whatever the source of the delay, it seems that individual
delays are not cumulative as demonstrated Heijink and Meulenbroek
(2002). They found that guitarists tend to speed up to compensate
for an anticipated time loss caused by an upcoming complex task to
be, on average, on time.

215

Identifying the transitional time required to go from one chord
shape to another is just one aspect of learning. The other aspect refers
to the order of the fingers arriving at their respective place.

The fingers’ arrival order is especially relevant if chords are
being strummed; releasing a vibrating string prematurely will
generate noise (pick/pull off). Likewise, placing a finger on a string
that is already vibrating may not be enough to dampen the sound
entirely, transferring part of the vibration intensity to the new
note (hammer-on).

The selection of a learning scheme suitable to model the speed
of all three subjects has proven to be difficult. No one algorithm will
model equally well the data from all three subjects because they have
distinct performing styles. While Subject 2 produced very ‘homoge-
nous’ data, Subject 3 performed the chords more erratically.

The more homogenous (not to be confused with pattern regu-
larity) the data is the more difficult it is to find patterns because one
concept overlaps the other.

In order to assess the predictive power of the data, we used an
Expectation Maximisation (EM) clustering algorithm. EM assigns a
probability distribution to each instance, which indicates the pro-
bability of it belonging to one of the clusters. We inputted the algo-
rithm with the expected number of clusters (number of non-barre
chords = 7) in advance, but no class was specified (as usual in a clus-
tering algorithm).

Table 13 shows the not so impressive results of the EM cluste-
ring algorithm in attempting to classify part of the instances of non-
-barre chords (from the bottom reference only) based solely on the
fret and speed of each digit (index, middle, ring). Approximately,
only 30% of the instances are correctly classified. This means that
data does not fall naturally into classes. This highlights the impor-
tance of data preparation.

216

Table 13: EM clustering speed results for non-barre chords.
A classification table (per subject) is presented to indicate the classes of the mis-
classified examples. For example, take chord C for Subject 1; the row ‘C’ and
column ‘C’ show that 3 classifications were correct but other instances of C
chord were misclassified as E (2x), G, D, and Dm (2x).

Subject 1 - Incorrectly clustered instances : 43.0 68.254 %

C A E G D Am Dm

C 3 0 2 1 1 0 2

A 0 4 1 0 0 0 4

G 1 0 0 3 3 2 0

E 0 4 2 0 0 0 3

D 0 4 0 0 1 0 4

Dm 0 2 0 0 0 0 7

Am 0 3 0 0 0 0 6

Totals 4 (6%) 17 (27%) 5 (8%) 4 (6%) 5 (8%) 2 (3%) 26 (41%)

Subject 2 - Incorrectly clustered instances : 44.0 69.8413 %

Dm A C D E G A

C 2 0 3 4 0 0 0

A 0 2 0 3 1 0 3

G 0 2 1 3 0 2 1

E 1 0 1 1 3 1 2

D 0 2 2 4 0 0 1

Dm 2 0 2 2 1 1 1

Am 0 0 1 2 3 0 3

Totals 5 (8%) 6 (10%) 10 (16%) 19 (30%) 8 (13%) 4 (6%) 11 (17%)

Subject 3 - Incorrectly clustered instances : 46.0 73.0159 %

Am A E G C Dm D

C 0 1 3 0 2 3 0

A 0 2 4 0 2 0 1

G 1 1 0 1 0 4 2

E 0 1 4 0 2 0 2

D 0 2 3 0 2 0 2

217

Dm 1 0 1 0 0 5 2

Am 1 2 4 0 1 0 1

Totals 3 (5%) 9 (14%) 19 (30%) 1 (2%) 9 (14%) 12 (19%) 10 (16%)

In theory, the better the classification made by a clustering algo-
rithm, the more suitable the data is to Machine Learning, therefore
requiring less effort in the data-preparation stage. Table 13 shows not
only the percentage of correct classification considering the chord as
the class but also a classification table to help analyse the classification
of the chords individually. For example, take chord C for Subject 1; row
‘C’ and column ‘C’ show that 3 classifications were correct but other
instances of C chord were misclassified as E (2x), G, D, and Dm (2x).

Figure 77: Clustering classification of speed for Subject 1.
The x-coordinates of the graph show the clusters (chords) and the y-coordina-
tes show the fret position.

Source: Own image.

Figure 77 shows a graphical way of presenting the classifica-
tion table of clustering algorithms. Note that, for Subject 1, only the
chords C (around 5th fret) and A (around 1st and 5th frets) presented
a pattern. This indicates that this piece of data, as it is, is not highly

218

suitable for machine learning, although supervised learning schemes
may present better results.

In order to improve the learning rate, the input must be honed to
make it more amenable to learning schemes; attribute selection, discre-
tization, and data cleansing are examples of these procedures. Another
strategy is to create new synthetic attributes in order to present existing
information in a form that is suitable for the machine learning scheme.

If a linear relationship involving two attributes A and B is sus-
pected, and the algorithm is only capable of axis-parallel splits, the
ratio A/B might have to be defined as a new attribute (Witten and
Frank, 2002, p.231). With the speed data, rather than just providing
the departure and arrival chord shapes, we must indicate the rela-
tionship between departure and arrival positions and we do that by
defining the motion involved in this translation.

The movements are described by the vertical (VD) and hori-
zontal (HD) displacement of the fingers that are used to perform the
chord shapes. To calculate the VD and HD, the string and fret values
of each position of a chord shape is subtracted from the previous
chord shape position that is being performed by the same finger.
For example, a move of the index finger from the position (string,
fret) = (3,3) to position(1,5) would result in a VD= -2 and HD = 2.

Table 14 shows the vertical (VD) and horizontal (HD) displa-
cement values per finger (I, M, R) of the non-barre chords, which
have used only the index, middle and ring fingers.

Table 14: Vertical and horizontal displacement of the fingers for non-barre chords.
Ref. is the frame of reference, VD = vertical displacement, and HD = horizon-
tal displacement. I, M, and R represent respectively the finger Index, Middle
and Ring. tMax is the time required to perform de chord shape.

Chord Ref. Fret IVD IHD MVD MHD RVD RHD tMax

C Bottom 9 1 0 2.55 0 4 0 522

C Top 1 -4 0 -2.3 0 -1 0 441

219

A Bottom 9 3 1 1.7 0 1 -1 281

A Top 1 -2 1 -3.45 0 -4 -1 206

G Bottom 9 4 1 4.25 1 0 0 591

G Top 1 -1 1 0 1 -5 0 426

E Bottom 9 2 0 3.4 0 3 -1 237

E Top 1 -3 0 -1.15 0 -2 -1 457

D Bottom 9 2 1 0 0 1 0 351

D Top 1 -3 1 -5.75 0 -4 0 461

Dm Bottom 9 0 0 1.7 0 1 0 180

Dm Top 1 -5 0 -3.45 0 -4 0 493

Am Bottom 9 1 0 2.55 0 2 -1 195

Am Top 1 -4 0 -2.3 0 -3 -1 468

…

Based on the average finger size of the adult male population
(Pheasant and Haslegrave, 2006, p.144) the middle and little finger
fingers were weighted slightly differently from the index and ring
finger, which was weighted = 1. The middle finger is more suitable
for reaching higher strings (bass) than low strings, so was weighted
0.85 for upward movement (less effort) and 1.15 for downward
movement (more effort). The little finger was the opposite, being
highly weighted in upward movements (1.25) and less so in (0.75)
the opposite direction.

In the last column of Table 14 the tMax class is shown. tMax is
the time that is necessary to perform the described movement, which
corresponds to the time of the slowest finger. Three fingers are used
to play non-barre-chords hence there are also three ‘arrivals’ per ins-
tance, tMax being the third arrival.

Table 15 shows a sample of the input data that is presented to
the learning schemes in order to predict the speed of movement.
Each instance (row) shows the same movement performed in diffe-
rent frets and its respective arrival times.

220

Table 15: Sample of the input data used to train the model for ‘arrivals’ in
non-barre chords.
I, M, and R represent the finger Index, Middle and Ring respectively. VD = ver-
tical displacement, HD = horizontal displacement. tFirst, tSecond, and tThird
are the times of the first, second, and third ‘arrivals’

Fret IVD IHD MVD MHD RVD RHD tFirst tSecond tThird

1 1 0 2.55 0 4 0 287 446 463

2 1 0 2.55 0 4 0 168 373 385

3 1 0 2.55 0 4 0 471 510 558

…

As previously stated VD and HD stand respectively for vertical
and horizontal displacements. I, M, and R stand for the index, mid-
dle and ring fingers. So, for example, IVD is the index vertical dis-
placement. tFirst, tSecond, and tThird are the time of the arrivals;
no information regarding the finger order of arrival is presented.

In theory, some learning algorithms allow a multi-class predic-
tion. In practice, Weka does not implement this feature. Therefore,
every arrival had to be modelled independently.

The fingers’ arrival order shares the same attributes as the speed
of the arrivals, but it requires a different learning strategy because
the class is nominal. Most of the classification algorithms perform
better with nominal classes then numerical classes. In fact, most of
the learning schemes implemented in Weka only support nominal
classes. This dramatically increases the number of algorithms that
can be used, and consequently the chance of finding one that can
perform better.

Table 16 shows sample input data used to train a model to
predict the finger’s arrival order. Once again, it is presented as a
multi-class situation. However, instead of training the model inde-
pendently as we have with the numeric data, we can simply concate-
nate the attributes into a single class. For example, the first instance
of Table 16 has a class ‘RMI’.

221

Table 16: Sample of the input data used to train the model for fingers’ arrival
order in non-barre chords.
I, M, and R represent the finger, Index, Middle and Ring respectively. VD =
vertical displacement, HD = horizontal displacement. First, Second and Third
indicated the finger related to the first, second and third ‘arrivals’.

Fret IVD IHD MVD MHD RVD RHD First Second Third

1 1 0 2.55 0 4 0 R M I

2 1 0 2.55 0 4 0 R I M

3 1 0 2.55 0 4 0 R M I

…

A note must be made regarding the classification of the finger’s
arrival order. In Chapter 4 (p. 96), we saw that Subject 2 was much
more regular in the way he placed his fingers on the freetboard. This
regularity can be easily spotted by the classification algorithms which
led to a classification rate of 100% accuracy. The same cannot be said
from Subject 1 and 3 in which the classification did not perform so
well, 70% and 63% of positive classification respectively. However,
this is still well above the ‘random’ classification threshold.

To improve the classification rate, a filter that removes the
misclassified instances according to the J48 Classification Tree was
applied before the final model was generated. The filter removes
approximately 20-25% of the data that is considered to be outliers,
considerably improving the performance rate of classification
schemes. The results presented in the next section refer to this
filtered dataset.

As previously explained in Chapter 3 (p. 70), barre and non-
-barre chords present significant biomechanical differences. While
the former uses a palmar pinch grip the later uses a tip-pinch grip.
Anatomically, they also require a different set of muscle and diffe-
rent levels of voluntary muscle contraction (MVC).

These differences, however, do not necessarily require sepa-
rate data preparation or the use of different learning algorithms.

222

However, the barre technique demands that one finger (usually index)
presses several positions at the same time, therefore is not possible
to calculate the movement distance in the same way as the non-barre
chords. In order to describe a barre technique too many attributes
would be necessary for the input dataset. This would lead to a pro-
blem known as the curse of dimensionality.

Curse of dimensionality (Bellman, 1961) refers to the exponen-
tial growth of hypervolume as a function of dimensionality. In prac-
tice, the curse of dimensionality causes learning algorithms with lots
of (irrelevant) inputs to behave badly.

To avoid the ‘curse’, barre-chords were processed separately
from the non-barre chords. In actual fact, not one but two model-
ling approaches were used.

The first approach is very similar to the one used with the
non-barre-chords; the difference is that the distance (VD and
HD) are not calculated to the index finger. Instead, two new
attributes believed to influence the overall speed of the barre-
-chords were added:

1. nStr – number of strings the barre covers; nStr = 6 for the F
Chord and nStr=5 for B and Bm chords.

2. HHM – Hand Horizontal Motion: HHM = 0 for the F chord
and HHM = 1 to B and Bm chords

In addition, little finger displacement is now also included in the
input. Table 17 shows a sample of the data used to model the speed
of the fingers (except the index) in a barre-chord situation.

223

Table 17: Sample of the input data used to train the model for ‘arrivals’
in barre-chords.
I, M, and R represent the finger, Index, Middle and Ring respectively. VD =
vertical displacement, HD = horizontal displacement. t1, t2, t3 are the times of
the first, second, and third ‘arrivals’.

Fret nStr HHM MVD MHD RVD RHD LVD LHD t1 t2 t3

8 6 0 -3.45 0 -1 0 -1.5 -1 129 208 287

9 6 0 -3.45 0 -1 0 -1.5 -1 189 236 318

1 5 1 2.55 2 2 1 1.25 0 541 579 619

…

The second model is just for the barre technique itself. Model-
ling the behaviour of the barre independently from the other fin-
gers helps to reduce the number of attributes, avoiding the curse of
dimensionality as previously explained. However, this is not the sole
advantage of this method.

Due to the mechanics of the barre technique the strings tend
to be pressed almost at the same time starting either from the top
or from the bottom (never from the middle). The time gap between
the notes is very small and in order to find the speed of the middle
positions of the barre more attributes had to be used to better des-
cribe the barre itself; these attribute would be irrelevant for the other
finger predictions.

224

Table 18: Sample of the input data used to train the model for the barre technique.
nStr is for the number of strings the barre covers, nN is the number of notes
the barre produces, VD is the vertical distance from the previous finger posi-
tion to the top string of the barre, HHM is the hand horizontal motion, N is
the string where barre meets a note, and tPN is the speed for N.

Fret nStr nN VD HHM MVD MVD MHD RVD RHD LVD LHD N tPN

1 6 3 5 0 2 1.7 0 4 0 3.75 -1 6 433

2 6 3 5 0 2 1.7 0 4 0 3.75 -1 1 353

3 6 3 5 0 2 1.7 0 4 0 3.75 -1 1 441

…

Table 18 shows the attributes used to model the barre; as
an example, take the first instance (row): it indicates that the 6th
string of F chord shape coming from the bottom reference took 433
ms to be pressed.

Speed Results

The results were calculated using 10-fold cross-validation. The data
was not normalised, meaning that the RMSE is only used as a com-
parison reference between the learning schemes for the same subject.

To measure numerical prediction, RAE and Correlation Coeffi-
cient (CC) are suggested as better measures of the models. Our suc-
cess benchmark is RAE < 15% with a CC > 0.95. For the classification
model, we aimed to archive a positive classification superior of 95%.

Table 19 present the results of non-barre chords for all three
subjects. The ‘1st’, ‘2nd’ and ‘3rd’ columns refer to the ‘arrivals’, mentio-
ned earlier. They were calculated using the stacking meta-learning
scheme (IBK, MP5, and Decision Table) for numerical prediction.
The ‘Order’ column refers to the arrival order of the finger (i.e.
IMR, RMI, etc.) and was calculated with the bagging (voting) meta-
-learning scheme (Random Forest, Random Committee, IBK) for
classification.

225

Table 19: Learning performance of the Non-barre chord models.
1st, 2nd, 3rd refer to the predicted times for the first, second, and third ‘arri-
vals’. The Order column refers to the classification of the finger’s arrival order.

Subject 1 1st 2nd 3rd Order

Correlation 0.996 0.9963 0.995 NA

MAE 6.3022 8.8959 11.8451 0.0464

RMSE 8.2778 12.0086 17.4824 0.126

RAE 8.89% 8.00% 8.45% 18.55%

Positive Class. NA NA NA 97.10%

Subject 2 1st 2nd 3rd Order

Correlation 0.997 0.996 0.9966 NA

MAE 3.2817 4.891 6.2852 0.0255

RMSE 4.6955 6.011 8.0996 0.0748

RAE 9.12% 13.26% 9.67% 13.54%

Positive Class. NA NA NA 100%

Subject 3 1st 2nd 3rd Order

Correlation 0.9938 0.9914 0.9897 NA

MAE 6.5743 7.7043 8.7596 0.0486

RMSE 8.6975 10.3227 11.6943 0.1284

RAE 10.81% 12.37% 13.09% 19.25%

Positive Class. NA NA NA 96.27%

Analysing the results in Table 19 we can conclude that the lear-
ning schemes combination worked effectively for all three subjects.
Interestingly, the smaller RAE (best fit) came from Subject 1, who
was found to be the slowest and least refined skill.

Regarding the fingers’ arrival order, the best results are for Sub-
ject 2. Subject 1 and 3 had the input filtered (removing misclassified
instances according to a J48 classification tree) to produce accepta-
ble results and, even after that could not match the 100% positive
classification of Subject 2 data. This confirms that Subject 2 was very
regular in this strategy of finger placement.

226

Table 20 present the results of the barre-chords for all three
subjects. The ‘1st’, ‘2nd’ and ‘3rd’ columns refer to the arrivals of the
non-barre fingers, which will invariably be the middle, ring or little
fingers (not necessarily in this order). The prediction result for the
order of arrival is presented at the ‘Order’ column.

We have assumed that the barre is performed by the index fin-
ger so the speed at which the index finger arrives in a certain position
of the barre is represented by ‘tPN’ column, calculated also using the
stacking meta-learning scheme (IBK, MP5, Decision Table).

Table 20: Learning performance of the barre-chords models
1st, 2nd, 3rd refer to the predicted times for the first, second, and third ‘arrival’.
tPN is the time of arrival of the positions within the barre. The Order column
refers to the classification of the finger’s arrival order.

Subject 1 1st 2nd 3rd Order tPN

Correlation 0.997 0.9964 0.993 NA 0.9954

MAE 7.4186 9.5964 12.6926 0.0105 11.1743

RMSE 10.1203 12.0281 15.8999 0.036 21.881

RAE 7.26% 8.76% 12.11% 4.74% 5.96%

Positive Class. NA NA NA 100% NA

Subject 2 1st 2nd 3rd Order tPN

Correlation 0.997 0.996 0.9966 NA 0.9639

MAE 3.2817 4.891 6.2852 0.0255 11.7343

RMSE 4.6955 6.011 8.0996 0.0748 40.7629

RAE 9.12% 13.26% 9.67% 13.54% 10.02%

Positive Class. NA NA NA 100.00% NA

Subject 3 1st 2nd 3rd Order tPN

Correlation 0.9938 0.9914 0.9897 NA 0.997

MAE 6.5743 7.7043 8.7596 0.0486 6.8391

RMSE 8.6975 10.3227 11.6943 0.1284 11.8305

RAE 11.11% 12.37% 13.09% 19.25% 5.64%

Positive Class. NA NA NA 96.27% NA

227

Once again, Subject 1 was the easiest to predict arrival time for,
and Subject 2 the easiest to predict fingers’ arrival order for. The
positions of the barre technique presented a slightly inferior result
for Subject 2 but still very reasonable at 10% RAE. Overall, it seems
that the more regular and skilful the guitarist, the more difficult is
to predict speed data.

Modelling Force and Posture Data

At first sight, the force data appears to be more suitable for machine
learning schemes compared to the speed data. Running the same EM
Clustering Algorithm previously applied to the speed data it is possi-
ble to observe that the instances fall more naturally into categories.

Figure 78: EM Clustering analysis of non-barre chords at the 1st fret for Subject 2.
The x-coordinates of the graph shows the clusters (chords) and the y-coordi-
nates represent an internal variable used by the algorithm.

Source: Own image.

228

Figure 78 presents a snapshot of EM building the clusters. It is
possible to observe the instances of some chords very well delinea-
ted, like the C (cluster 5). In fact, classification algorithms are capable
of finding the class of a chord with a success rate of over 97% using
only the force values produced by each finger (Comparison 3). This
indicates that the data indeed holds some correlation to the force
produced by the finger and the chord shape.

Comparison 3: Chord classification by force production.
Comparison between three classification algorithms (Bayes Net, NBTree, and
J48) using the force values per digit as input and chord as the class.

Tester: weka.experiment.PairedCorrectedTTester

Analysing: Percent_correct

Datasets: 1

Resultsets: 3

Confidence: 0.05 (two tailed)

Dataset (1) BayesNet | (2) NBTree (3)J48

‘S2_Force_NB_P1-weka.filt(100) 97.76 | 97.48 * 91.42 *

--

 v/ /*) | (0/0/1) (0/0/1)

Key:

(1) bayes.BayesNet

(2) trees.NBTree ‘

(3) trees.J48

Regrettably, discovering the chord shape based on the finger’s
force values is the opposite of what we are trying to achieve. We

229

aim to find the force of each finger when performing a certain chord
shape. To accomplish that, we need to find the attributes that best
describe the chord shape.

One possible way to describe a chord shape is by its fingering.
Ironically, this does not necessarily mean that the finger must be indi-
cated. The chord shape description could be simply a list of positions
(string, fret) that needs to be pressed in order to perform the chord.
For example, the C chord shape can be written as [(5,3); (4,2); (2,1)].

Table 21 shows the fingerings for the non-barre chords in the
first region of the fretboard (fret 1..4).

Table 21: Attributes of Non-barre chords.
‘IS’ stands for the Index finger in a particular String position, ‘IF’ for the Index
finger in a particular Fret position. The same applies to the middle (M) and
ring (R) fingers.

ChordShape IS IF MS MF RS RF

C 2 1 4 3 5 3

A 3 3 2 2 2 2

G 5 2 6 3 1 3

D 3 2 1 2 2 3

E 3 1 5 2 4 2

Dm 1 1 3 2 2 3

Am 2 1 4 2 3 2

There is another way to describe the chord shape that is less
trivial: the upper limb posture. As explained in Chapter 4, certain
‘frozen positions’ (FPs) were extracted from the position data and
these FP can function as chord shape predictors. It is assumed that
the posture data have a more direct correlation with force produc-
tion as seen in Chapter 3 (p. 74). Table 22 lists the most common
FPs per chord and fret.

230

Table 22: Frozen Positions (FP).
The values are the MIDI readings related to the angle of the articulation recor-
ded by the Exo-Skeleton.

Chord Position Wrist Forearm Elbow Shoulder

C P1 36 12 59 74

C P5 38 12 55 69

C P9 41 18 52 63

A P1 51 21 69 71

A P5 49 25 62 69

A P9 46 34 55 61

G P1 33 21 59 75

G P5 33 28 52 72

G P9 36 38 49 66

E P1 49 8 65 74

E P5 46 12 59 67

E P9 51 15 52 60

D P1 41 25 44 74

D P5 43 25 41 67

D P9 46 38 47 61

Dm P1 43 21 72 73

Dm P5 46 18 65 68

Dm P9 46 28 65 61

Am P1 38 15 78 75

Am P5 36 15 65 69

Am P9 33 21 65 63

Bm P1 25 12 62 72

Bm P5 28 15 59 70

Bm P9 30 21 55 65

F P1 28 12 69 75

F P5 30 15 62 71

F P9 33 21 59 64

B P1 17 8 59 72

231

B P5 17 12 55 69

B P9 22 25 49 65

What initially appeared to be a fairly easy fit for machine lear-
ning algorithms now appears to be far more complex. The reason is
that even the smallest variation in posture impacts the recorded force.
Unfortunately, the equipment used to capture the data did not have
any synchronisation mechanism between force and posture to let us
capitalise on this variance. Instead, we end up with part of the force
readings with a range too wide for a machine learning algorithm to
make sense of it. The best results achieved did not exceed 60%. RAE.

Figure 79 and Figure 80 show two very different force rea-
ding examples. While the finger’ force values for the Dm chord is
very regular and easily approachable by an ML algorithm, the G
seems to be chaotic.

Figure 79: Force reading – G (Fret 1) Subject 2;
The x-coordinates are the number of readings and the y-coordinates the
force measured.

Source: Own image.

232

Figure 80: Force reading - Dm (Fret 5), Subject 2.
The x-coordinates are the number of readings and the y-coordinates the
force measured.

Source: Own image.

ML algorithms perform poorly with frenzied data such as shown
in Figure 79, so in order to increase the learning rate we had to
pre-process the data and extract the best examples to represent the
chord shape. This was done by analysing the frequency distribution
of the readings of every chord per fret and selecting the 10 and 30
most frequent examples respectively for barre and non-barre chords.
The difference in the number of selected examples between barre
and non-barre chords is proportional to the number sensors used
in readings: 9 for barre-chords (3 fingers + 6 for the barre) and 3 for
non-barre (3 fingers).

Figure 81 shows an example of the post-processed data extrac-
ted from the G chord data shown in Figure 79.

233

Figure 81: Cleaned force reading – G (fret 1), Subject 2.
The x-coordinates represent the sequential order of the reading and the y-coor-
dinates the force measured.

Source: Own image.

The training stage of the force modelling is not very different
from that for speed modelling, with one main difference. As previou-
sly explained, the force data were recorded under static conditions
so instead of modelling the ‘movement’, we modelled the hand static
position which could use the fingering and/or the FP as descriptors.

The algorithms that best performed for the force data were
similar to the three used for the speed data numerical prediction,
however instead of using an MP5 (model tree), we decided to use
REPtree because this time the difference in performance was statis-
tically significant.

Using a stacking meta-leaning scheme composed of REPTree,
Decision Table and the IBK classifiers, we ran a comparison (Com-
parison 4) to determine the relevance of the posture and the finge-
ring descriptors in the prediction of the force. The options analysed
were: a) posture and fingering; b) fingering only; and c) posture only.

234

Comparison 4: Posture relevance for force prediction.

Tester: weka.experiment.PairedCorrectedTTester

Analysing: Root_relative_squared_error

Datasets: 3

Resultsets: 1

Confidence: 0.05 (two tailed)

Dataset (1) Stacking

--

a) S2_P1-5-9_Fing_and_Posture (100) 15.10

b) S2_P1-5-9_Fingering_only (100) 15.12

c) S2_P1-5-9_Posture_Only (100) 15.07

--

(v/ /*)

Key:

(1) meta.Stacking (REPTree, Decision Table and the IBK)

As can be seen in Comparison 4, all three options performed
very similarly with RMSE around 15 grams. Against our expecta-
tions, the dataset containing the posture and fingering did not pro-
duce any statistical gain. To make this worse, it considerably slowed
down the training stage.

While the fingering data is a direct translation from the spatial
domain and does not require any complex algorithm to be found, the
posture is not as easy to be extracted from the chord shape, requiring
independent models for every upper limb articulation.

For the reasons above, we have decided not to use the posture
data at this stage to predict the finger’s force distribution. Never-
theless, we still believe the analysis of posture data can strongly

235

contribute to the improvement of educational methods of guitar
training and the ergonomics of guitar manufacturing.

Table 23 shows part of the input data used to train the force
model for the index finger. The force is given by the fIndex and the
other attributes are spatial coordinates of the finger position (same
attributes of Table 21). The Chord column is just an illustrative refe-
rence and it is not used in the actual training.

Table 23: Sample of the input data used to train the index finger force model
for Non-barre chords.
fIndex is the force of the index finger and the other attributes are spatial coor-
dinates of the finger position where ‘IS’ stands for the Index finger in a parti-
cular String position, ‘IF’ for the Index finger in a particular Fret position. The
same applies to the middle (M) and ring (R) fingers.

Chord Fret IS IF MS MF RS RF fIndex

A 1 4 2 3 2 2 2 0.088136

A 5 4 2 3 2 2 2 0.020339

A 9 4 2 3 2 2 2 0.00339

Am 1 2 1 4 2 3 2 0.155387

Am 5 2 1 4 2 3 2 0.155387

Am 9 2 1 4 2 3 2 0.073189

The preparation of the data for the barre-chords is more time
consuming than non-barre chords. For the reasons discussed in the
speed data modelling, the barre (index finger) is modelled separately
from the middle, ring and little fingers.

Due to the limited number of examples of barre-chords, it is
necessary to be careful when selecting the descriptors. Nonethe-
less, we believe that the position of the other fingers in relation
to the barre has a direct impact on the force the guitarist is able to
apply on the barre.

Table 24 shows an example of the attributes used to describe
the barre of a B chord. They are:

236

1. nStr.: number of strings the barre covers or the upper string
the barre reaches.

2. nN: Number of notes the barre produces;
3. pStr.: Even if just a couple of notes need to be produ-

ced by the barre, we have opted to model all 6 strings the
barre may eventually cover. pStr. is the string the force
(fPN) is related to.

4. MS, MF, RS, RF, LS, LF: String and fret coordinates respec-
tively for the middle, ring and little fingers;

5. fPN: Force applied in a particular string (pString) of the barre.

Table 24: Sample of the input data used to train the index finger force model
for barre-chord (the barre technique).

Fret nStr. nN pStr. MS MF RS RF LS LF fPN

1 5 2 1 4 2 3 2 2 2 0.204

1 5 2 2 4 2 3 2 2 2 0

1 5 2 3 4 2 3 2 2 2 0

1 5 2 4 4 2 3 2 2 2 0.009

1 5 2 5 4 2 3 2 2 2 0.188

1 5 2 6 4 2 3 2 2 2 0.040

The middle, ring and little finger models use the same attribu-
tes as the barre itself, shown in Table 24 However the fPN was repla-
ced by the force of a particular finger. In addition, there is no need
for pString since the finger in a tip-pinch grip should only press one
string at a time.

Force Results

The models were trained using 10 fold cross-validation with 630 ins-
tances for non-barre and 90 for barre-chords. Similarly, to the speed,
the RAE and CC were used to measure success.

237

Due to the initial technical problems with the equipment repor-
ted in Chapter 4 (p. 108), we were expecting a less accurate predic-
tion than was achieved in the speed modelling. Ideally, we wanted to
maintain the Relative Absolute Error (RAE) at approximately 20%
with a confidence interval over 0.95. Unfortunately, despite our best
efforts to highlight all the patterns in the pre-processing stage this
was not possible at all times. Nevertheless, an RAE < 30% can still
be considered a reasonable result.

Table 25 present the results of non-barre chords for all three
subjects. Each column shows the results for the finger’s force model.
It should be remembered that the non-barre chords did not use the
little finger and the chord fingering was the same to all subjects.

Table 25: Learning performance of the Non-barre chords force models.

Subject 1 Index Middle Ring

Correlation 0.973 0.9765 0.9647

MAE 0.0145 0.0112 0.0109

RMSE 0.0191 0.0145 0.0149

RAE 21.4227 % 20.6907 % 25.5004 %

Subject 2 Index Middle Ring

Correlation 0.9885 0.985 0.9848

MAE 0.0121 0.0172 0.0151

RMSE 0.0162 0.0239 0.0194

RAE 13.5158 % 14.4991 % 18.1679 %

Subject 3 Index Middle Ring

Correlation 0.9746 0.9743 0.9697

MAE 0.0129 0.0107 0.0083

RMSE 0.0163 0.0137 0.0107

RAE 20.283 % 23.8152 % 22.0704 %

Table 26 present the results for the barre-chords. The evalua-
tion of the results needs to be made in a case by case basis as genera-
lisations per subject are not possible. For instance, while the models

238

for Subject 2 non-barre chords seem to provide the best fit for the
data among all the subjects, they also present the worst result for the
barre (fPN) model.

Table 26: Learning performance of the barre-chords force models.

Subject 1 fPN Middle Ring Little

Correlation 0.9866 0.9908 0.9596 0.9516

MAE 0.01 0.006 0.0053 0.0048

RMSE 0.0169 0.0086 0.0074 0.0073

RAE 11.4787 % 10.9011 % 23.336 % 23.2545 %

Subject 2

Correlation 0.9576 0.9964 0.9754 0.9566

MAE 0.0131 0.0083 0.0049 0.0057

RMSE 0.0227 7.6606 % 0.0063 0.0073

RAE 20.7787 % 9.6549 % 20.0571 % 29.3128 %

Subject 3

Correlation 0.9899 0.986 0.954 0.9649

MAE 0.0066 0.0068 0.0031 0.0061

RMSE 0.0143 0.0087 0.005 0.0091

RAE 8.0771 % 16.15 % 19.8382 % 21.0144 %

In the barre-chords models the relatively high RAE from the
ring and little finger compared with middle finger attracted our atten-
tion. This demonstrates that the force values recorded for these fin-
gers were very sparse, which could have two causes: a) they are highly
subjective to the force from the index and middle fingers; or b) they
did not hit the sensors properly.

Modelling Precision Data

Unlike the speed and force data, the precision data has very few
examples; therefore, precision errors are difficult to predict using
ML algorithms.

239

As seen in Chapter 4 (p. 96), the subject with the highest num-
ber of errors (slips) had 22 errors out of 999 opportunities, 2.2% HEP.
Subject 1 had an error rate of only 0.2% HEP. Such small error rates
could be easily linked to equipment failure or any other factor that
is not guitarist/guitar related. The error likely had a random unk-
nown cause in which no pattern can be detected.

With such a small number of error examples, every single one
counts. They need to be individually analysed to have their relevance
assessed. In case they are proven to be more than a random error,
we need to examine the story behind them. What can we learn from
error? What is the reoccurrence probability? These are the questions
that need to be answered. However, unlike humans, computers are
not good at learning with just one error.

Another aspect of error that was not sufficiently explored in
the experiment is the correction strategy. When a guitarist hits the
wrong position, what happens? Does he try to correct it? If so, how
long does that take?

Palmer and Van de Sande (1993) shed some light on the topic
reporting that musicians (pianists) tend to ignore the error and carry
on with the performance. An explanation for that might be related to
motor limitations. The fact is, in order to engage in error correction
a musician must continuously monitor their activity by hearing the
outcome of its performance. Reaction to auditory stimuli is about 30
to 50 ms (Thompson et al., 2006). Once the error stimulus has been
detected by the performer (and probably by the listener too), a physi-
cal action must take place to attempt to correct the error. The time it
takes to complete the movement component of a response depends on
the nature of the movement, but a minimum of 300 ms can be expec-
ted (Sanders and McCormick, 1993, p.219), which is probably too late.

To make matters worse, a transition between chord shapes
(movement) can present zero or several errors per finger and position,
each with a different cause and yet interrelated. If we make an analogy
with auto-sport racing, we can compare the guitarist with a driver that

240

attacks a turn wrongly and ends up with the vehicle in a track posi-
tion that will not let him perform the next few turns correctly. The
same happens with guitarists, one error may trigger a chain of errors.

It is unlikely that so many correlations can be found in such a
small dataset. Perhaps, the ‘randomness’ aspects of errors make them
virtually impossible to be predicted at all. Fortunately, we might not
have to ‘predict’ the errors in order to achieve our main goal.

Let us remind ourselves of the objective of such modelling: to
create computational models capable of simulating a guitar perfor-
mance that resembles a human player. Unlike the ergonomic, we
are not interested in finding the cause of the errors and how they
could impact productivity or possibly harm the guitarist. Here, we
are interested in ‘recreating’ the errors and not necessarily ‘predict’
them, which would demand a far greater database.

As seen in the previous section, instance-based learning is the only
machine learning scheme capable of drawing generalisations from spe-
cific examples and we believe it is the most suitable approach to model
errors. In addition, instance-based learning can continually accumu-
late examples (knowledge) postponing the decision-making process.

Weka does implement several algorithms for instance-based
learning; The IBK in particular has been successfully used to model
both speed and force. The same approach with precision data is not
feasible due to the low number of examples and would certainly gene-
rate an over-fitted model.

An over-fitted model is not a bad thing if a prediction is not the
goal. It is an effective way to create highly specialised rules applica-
ble to one subject in a particular situation. This however may not
work because the subject does not make the same error every single
time the same scenario is recalled.

We need to be able to determine the odds of an error happe-
ning in a particular circumstance. For that reason we have decided
to develop our own instance-based algorithm designed specifically
to model guitar errors.

241

Algorithm Description

Like speed, precision errors are linked with movements, which are
described by vertical and horizontal displacements calculated for
every chord transition.

The algorithm we have developed adopts a ‘closed world’ assump-
tion, meaning that only positive examples are modelled and the rest
are assumed to be negative. In this case, the error occurrence is a posi-
tive example. Hence, any movement that was not perfectly executed
is stored in the database. The number of times the movement is per-
formed is also stored so that the probability of error can be calculated.

Since speed impacts precision, the counting takes place within
adjustable speed ranges according to the error frequency distribution.

The properties of the error itself include the moment it happe-
ned (timestamp), its duration, and its absolute position (string, fret).
Errors can be recorded in isolation or within a group but they are
always considered a single entity when replicated. Figure 81 shows
the class diagram (OOP) for precision error instance-based algorithm.

Figure 82: Class Diagram of the precision error KNN algorithm.

Source: Own image.

As can be seen in Figure 81, the Movement is not just characte-
rised by the vertical and horizontal displacements from the previous

242

to the actual chord shape. The next chord shape in the sequence is
also recorded for comparison purposes, as later explained.

Figure 83: Data used in the precision error modelling example.

Source: Own image.

Figure 83 illustrates an example of the algorithm data struc-
ture. The ‘Error Counter’ is an array used to count the number of
movements (nMov) and the number of errors (nError) in a particu-
lar speed range (Speed). The ‘Errors’ array stores the string (st), fret
(ft), timestamp (ts), and duration (dur) of the error.

For example, consider the movement from the chord shape D
to G followed by A; it was executed 34 times (15 + 12 +7) and the
highest number of errors occurred when the transition from D to G
took less than 300 ms.

In the ‘less than 300 ms’ range, three errors were recorded. The
first two errors (id 0 and 1) were actually two instances of the same
error; therefore, it seems to be a frequent occurrence (higher pro-
bability). The third error (id 2) is a chain of errors.

243

To establish whether to add an error or not to a computer-
-generated guitar performance, the algorithm performs a probabi-
lity analysis. For instance, consider a performance that contains the
same movement from D to G followed by A. The first step is to find
out the speed in which the movement is performed (speed model).
Let us assume the movement takes 420 ms.

The value found is greater than the 300 but less than 500 ms.
The total number of repetitions in the range ‘less than 500’ is 27
(i.e. 15 + 12) and just one error was recorded in the range between
300 – 500 ms. This gives us initial odds of 1 in 27 (3.7%). The algo-
rithm attempts to introduce precision errors at this rate 3.7% but
the moment when the error occurs is randomly selected as well as
which error to simulate. Naturally, the errors with more entries have
a higher probability of selection.

A 3.7% chance of error is a reasonable rate for a ‘humanised’
music performance. In fact, with such a small database the probability
that an error will be recreated is very slim. On the other hand, such
over-fitted models can also add too many of the same errors. This
is where the K-Nearest-Neighbour (KNN) concept comes into play.

So far, the example described used 1 KNN, in other words, it was
looking for exactly the same movement used in the training stage (D
to G followed by A). In the database there are two other movements
from D to G (ids 1 and 2). One followed by F and the other followed
by C. If the KNN = 3, these other two records will also contribute to
the error probability rate.

Let us assume odds of 1 in 13 (7.6%) and 2 in 22 (9.09%) respec-
tively for the movement ‘D to G followed by F’ (id 0) and ‘D to G fol-
lowed by C’ (id 1). The algorithm can be configured to work with:

1. The average probability: The errors of the all 3-Nearest
Neighbours movements, in the particular speed range, are
candidates to be included 6.7% ((7.6 + 9.09 +3.7)/3) of the
times the original movement happen;

244

2. The highest probability: The errors of the movement with
the highest probability (movement id 1) are included 9.09%
of the times that the original movement is made;

3. The lowest probability: The same reasoning as the previous
option (ii), but using the movement with the lowest pro-
bability (3.7%);

4. Weighted probability based on a distance function: Using a
distance function to calculate similarities in the movements
in order to use the errors associated with them. This is the
default option and also the most elaborate one, as explained
in the sequence.

The distance function is the selection criteria to find the nearest
neighbours. It is a simple Euclidean distance measure from the fingers’
vertical and horizontal displacement. It is composed of two parts: a)
the main chord shape transition (i.e. D to G) weighted at 0.6; and b)
the next chord shape transition (i.e. G to F or G to C) weighted 0.4.

The fingering used to calculate the vertical and horizontal dis-
placement (movement) is given in Table 27. ‘S’ stands for string ‘F’
for fret; ‘I’, ‘M’, ‘R’, ‘L’ stands respectively for the index, middle, ring
and little fingers. Note that the F chord is the only one that makes
use of the little finger.

Table 27: Fingering of the chords used in the precision modelling example.
‘IS’ stands for the Index finger in a particular String position, ‘IF’ for the Index
finger in a particular Fret position. The same applies to the middle (M), ring
(R) fingers, and little (L) fingers.

Chord IS IF MS MF RS RF LS LF

C 2 1 4 2 5 3 - -

A 4 2 3 2 2 2 - -

G 5 2 6 3 1 3 - -

D 3 2 1 2 2 3 - -

F 6 1 3 2 5 3 4 3

245

The method to calculate the vertical and horizontal displace-
ment was already explained in the Section 5.2.4 (p. 177), however
two additional points can be observed regarding the transition to
and from barre-chords (e.g. mov(G,F)).

The first point is related to the displacement for the index fin-
ger. The positioning of the index finger is assumed to be the one in
the highest string (bass-string) of the barre. In the case of the F chord
shape, it is the position (6,1).

The second point is the procedure to calculate the displacement
of a finger that was not being used - e.g. mov(G,F). In this situation the
calculation is done based on the location of the adjacent finger, pre-
ferably the one on the right (palm facing – i.e. the ring finger would
be the one on the right of the middle finger). Table 28 show the fin-
ger’s vertical and horizontal displacement values for the primary and
secondary transitions used in the example illustrated in Figure 83.

Table 28: Calculated values for the primary chord transition (precision
modelling example)
I, M, R, and L represents the finger, Index Middle, Ring and Little respectively.
VD = vertical displacement, HD = horizontal displacement.

Translation IVD IHD MVD MHD RVD RHD LVD LHD

mov(D, G) 2 0 5 1 -1 0 - -

mov(G, A) -1 0 -3 -1 1 -1 - -

mov(G ,C) -3 -1 -2 -1 4 0 - -

mov(G, F) 1 -1 -3 -1 4 0 3 0

mov(C,G) 3 1 2 1 -4 0 - -

The distance between movements is given by Equation 5. It
is simply the average of the absolute distance between the original
movement and the nearest-neighbour candidate movement, where
‘m1’ is the original movement, and ‘m2’ is the candidate movement.
‘vd’ and ‘hd’ is the vertical and horizontal displacement of each fin-
ger; ‘nfingers’ is the number of fingers involved in the movement.

246

Equation 5: Movement distance equation.

dist m m
vd m vd m hd m hd m

nfingers
(,)

() () () ()
1 2 1

2 1 2 1

2
� �

� � �� ��
�

In our example, we need to find the likelihood of the secondary
transition from the original movement to the KNN candidate move-
ments, represented by ‘sm1 = dist (mov(G,A), mov(G,C))’ and ‘sm2= dis-
t(mov(G,A), mov(G,F)’. Bear in mind the primary moment is the same
for both options: mov(G,D);

Table 29 shows the distance values of the movements. When a
movement is equal to another its distance is 1. The secondary move-
ment that is the most similar the mov(G,A) is the mov(G, C) with
a distance of 0.33.

Table 29: Calculate distances for the secondary transition of precision
modelling example.
I, M, R, and L represents the finger, Index, Middle, Ring and Little respecti-
vely. VD = vertical displacement, HD = horizontal displacement. Dist(x) is the
calculated distance between the movements.

Movement Distance IVD IHD MVD MHD RVD RHD LVD LHD Dist(x)

dist(mov(G,A),mov(G,A)) 0 0 0 0 0 0 - - 1

dist(mov(G,A),mov(G,C)) 2 1 1 0 3 1 - - 0.33

dist(mov(G,A),mov(G,F)) 2 1 0 0 3 1 3 0 0.25

To calculate the final distance between the movements, the
weights must be applied to the primary and secondary move-
ments. Table 30 lists the weighted distances for all the movements
in the database.

247

Table 30: Final weighted distances of the movements used in precision
modelling example.
Distance calculated to the movements shown in Figure 83.

id to from next Distance

0 D G A 1

1 D G C 0.73

2 D G F 0.7

3 C G A 0.6

From the movements illustrated in Figure 82 , the ‘D to G fol-
lowed by C’ would be the 2nd Nearest-Neighbour with a distance of
0.73 (1 x 0.6 + 0.4 x 0.33). Going back to the probability calculation,
this would mean that the probability of using the errors of the move-
ments ‘D to G followed by C’ will be greater than using the errors of
the movement ‘D to G followed by F’.

The number of nearest-neighbours can also be determined by
a similarity threshold. In the previous example, a similarity thre-
shold of 0.7 would be adequate. The higher the similarity threshold
the more specialised is the error and vice-versa. The similarity thre-
shold is a good way to control the number of errors inserted into the
generated performance.

EQUIPPING THE OCTOPUS API WITH BIOMECHANICAL-
INSPIRED MODELS

In the previous section we have explained how the speed, force and
precision data were independently modelled using ML schemes. In
this section we explain how they have been put together to simu-
late a guitar-performance.

In the first part of this chapter we briefly presented the Octopus
Music API, a Java library designed to model music performances. We
have seen that Guitarist is a class that encapsulates all the knowledge
necessary to play musical material (playable interface) in the Guitar.

248

Neither the Guitarist nor the Guitar was equipped with the
attributes designed to take advantage of these biomechanical-inspi-
red models. The focus was to implement a Musician that could adapt
the music performance based on the instrument it was playing. Now,
we want to go a step further into this specialisation and simulate
the impact of the constraints of the human body in this adaptation,
mainly focusing on the production of errors.

In order to make use of the new models we have extended the
Guitarist and Guitar classes with its respective counterparts Idiomati-
cGuitarist and IdiomaticGuitar, which is explained as follows.

Class octopus.idiomatic.IdiomaticGuitar

The IdiomaticGuitar extends the Guitar class by specifying detai-
led mechanical attributes, mainly regard to guitar dimensions
and string gauge.

At the current stage, the guitar body dimensions do not play an
active role in the way the Guitarist precision model interacts with the
Guitar but it is likely to do so in the future, hence we already inclu-
ded a slot for this in the model. The attributes modelled for the gui-
tar body include: body length, upper width, lower width, and depth
(Figure 7, p. 52).

Even though dimensions are not considered in the calculation of
precision errors, they are in force prediction. For the latter, the most
relevant attributes for the IdiomaticGuitar are: scale length, number of
clear frets, and string data (tuning, diameter, tension). Usually, string
manufacturers provide the string diameter and tension data; howe-
ver, the tension value is calculated using a scale length and tuning
that might not be the same in the guitar used. Therefore, the Idioma-
ticGuitar also implements methods to adjust the string’s manufactu-
rer tension to its own dimensions and tuning.

Code Example 14 demonstrates how to model an IdiomaticGui-
tar. The first step is to model the strings which equip the guitar.

249

In our example, six strings were modelled using the data provi-
ded by the manufacturer (D’Addario Model EJ27N). The strings,
the number of clear frets, and the guitar scale length are informed
at the moment the guitar is created; in this case, we called the gui-
tar ‘Admira Concerto’.

Another important attribute to calculate the force required to
produce a clean note is the string action (per fret). The last few lines
of the code shown in Code Example 14 demonstrates a simplified
way to define the string action. The string action can be set manually,
through a [String, Fret] matrix of scale action values (mm), or auto-
matically as seen in the example; In order to set the string action
automatically a reference string action value must be passed toge-
ther with a constant step value that is added or subtracted from the
reference based on the fret location. In the example, the scale len-
gth for the 12th fret is 4 mm and the step value is 0.250 mm, then the
scale length for 11th fret is 3.75 mm (Table 4, p. 55).

250

Code Example 14: Defining an Idiomatic Guitar.

// Model for a set of D’Addario Classic Nylon Strings

// Material: Silverplated Wound and clear nylon

// Gauge - Normal Tension;

GuitarString[] daddarioClassicalNylonStrings = {

// 1st string, tuned in E5, string diameter = 0.71,...

//...tension informed in by the manufacturer = 6.94 kg,...

//... tension calculated on the reference scale length = 648.

 new GuitarString(1, NoteFactory.getNote(“E”,5),0.71,6.94,648),

 new GuitarString(1, NoteFactory.getNote(“B”,3),0.82,5.26,648),

 new GuitarString(1, NoteFactory.getNote(“G”,3),1.02,5.49,648),

 new GuitarString(1, NoteFactory.getNote(“D”,3),0.74,7.08,648),

 new GuitarString(1, NoteFactory.getNote(“A”,2),0.89,6.80,648),

 new GuitarString(1, NoteFactory.getNote(“E”,2),1.09,6.35,648)

};

//Create the Admira Concerto Guitar with 12 clear frets, D’Addario Strings,

// and scale length of 650 mm.

IdiomaticGuitar admiradConcerto = new IdiomaticGuitar (12,

 daddarioClassicalNylonStrings, 650);

//Automatically populate the sting action values;

// arg1: String action on the 12th fret = 4mm;

// arg2: Decrement of string action for the previous fret = 0.125; e.g. 11th

fret = 3.75 mm;

 admiraGrandConcerto.calculateStringAction(12,4, 0.250);

The string tension and action are the two parameters that are
used to verify if the predicted force is enough to produce a clear note.
The quality of the note varies according to the predicted force the
IdiomatiGuitarist ‘virtually’ applies to depress the strings. At this stage,
three categories of sound quality were implemented:

251

1. Muffled note: Less than 75% (inclusive) of the necessary force
to produce a clear note; this value is proposed based on extrac-
ted force measurement discussed in Section 3.1.6 (p. 56).

2. Buzzed note; More than 75% but less than enough pressure
to produce a clear note.

3. Clear note: Enough force to fully depress the string against
the fretboard in a particular fret-region.

Naturally, this list can be extended and modified by the program-
mer according to the capabilities of the Sound Generation Unit used.

As an extended version (subclass) of the Guitar, the IdiomaticGui-
tar must also implement a visual representation of the performance.
This was done by extending the GuitarGraphicalInterface with a colour
scheme that shows when a position was accidentally pressed (preci-
sion) or if it was pressed without enough force. Figure 84 shows the
visual representation of an idiomatic performance.

Figure 84: IdiomaticGuitarGraphicalInterface class.
The position in red and labelled with ‘###’ represents a precision error, the positions
in yellow represent a muffled note, orange a buzzed-note, and green a clean note.

Source: Own image.

Class octopus.idiomatic.IdiomaticGuitarist

The class IdiomaticGuitarist summarises everything that has been
discussed up to this point. It merges the theoretical guitar playing
knowledge with the limitations of the human body, represented

252

in the form of the biomechanical-inspired models of speed, pre-
cision and force.

As we previously explained, the guitarist must adapt his perfor-
mance style not only to the guitar but also the musical style. In fact,
we have mentioned other situations that can potentially impact the
performance but were not fully studied in the scope of this book, such
as: MPA, low temperature, injuries or a training state. In summary,
the performance is susceptible to many other factors that were not
touched upon by this research, which was limited to the force, preci-
sion and speed the left-hand digits. For this reason, the IdiomaticGuita-
rist is equipped with a vector of biomechanical-inspired models; one
for each scenario of aggregate circumstances that could impact per-
formance. These scenarios can be saved and retrieved as one wishes.

In the Octopus Music API, all background processes required
to play a Musical Data Structure (such as Music) take place immedia-
tely before the execution of a piece of music. This means that all the
decisions regarding chord shape selection, speed, precision errors
and force are calculated and stored in form of a performable Music
before it can actually be played. We have called this stage the ‘lear-
ning’ stage; it is at this stage that the Musical Data Interpreter classes
(e.g. IdiomaticGuitarist) actually take all the decisions regarding per-
formance actions. This stage should not be confused with the ‘lear-
ning’ stage of the Machine Learning Algorithms.

In order to instantiate an IdiomaticGuitarist object, four attributes
must be informed: the location of the pre-generated force models, the
location for pre-generated speed and fingers’ arrival order models,
the precision errors training file, and the IdiomaticGuitar.

The models of force, speed, and “fingers’ arrival order” are loa-
ded and used through the imported Weka classes. A discussion on the
technical matters of the integration of Octopus and Weka is beyond
the scope of this book because this is purely a software engineering
task, which should be straightforward for any Java programmer. For
more details see Weka (2009).

253

The precision error model, however, was implemented directly
on the IdiomaticGuitarist, which calculates the probability of error
based on the training data file passed to the constructor, as explai-
ned in Section 5.2.6.1 (p. 202).

Code Example 15 demonstrates how to instantiate and request
the IdiomaticGuitarist to perform a harmonic sequence. The Harmo-
nicProgression in question is a usual Flamenco harmonic sequence
(Fernández and Rodemann, 2005). From the HarmonicProgression,
we draw out the chords in the key of E Major – four chords in total.
These four chords are inserted into the Harmony line and are played
using a pre-defined GuitarArpeggio. As explained in Section 5.1.2.9
(p. 148), the timing in which each chord is played is defined by the
RhythmPattern associated with the Harmony.

254

Code Example 15: BB_Queen
//CREATING THE GUITARIST

IdiomaticGuitarist BB_Queen = new IdiomaticGuitarist(admiraGrandConcerto,

 “../forceModels”, “../SpeedModels”, “../Errors.txt”);

//DEFINING A HARMONIC SEQUENCE

HarmonicProgression flamencoChords = new HarmonicProgression(“Flamenco Cadence”);

 flamencoChords.addScaleDegree(“II”, IntervalFactory.getMajorSeventh());

 flamencoChords.addScaleDegree(“VI”, IntervalFactory.getMajorSeventh());

 flamencoChords.addScaleDegree(“II”, IntervalFactory.getMajorSeventh());

 flamencoChords.addScaleDegree(“I”);

//GETTING THE CHORDS FROM THE HARMONIC SEQUENCE

 Chord[] chords = flamencoChords.getChords(NoteFactory.getE());

//SETTING UP THE HARMONY

Harmony harmony = new Harmony(RhythmPattern.getDemoRhythmPattern());

harmony.addChord(chords, GuitarArpeggio.getDemoGuitarArpeggio());

//PLAYING

BB_Queen.showInstrumentLayout();

BB_Queen.play(harmony);

The first decision the IdiomaticGuitarist tries to make when
requested to play a Harmony regards which chord shapes to use in
order to play the Chords, just as the normal implementation of the
Guitarist would do it. Even though the process of selecting of the
chord shape is not the focus of the current research, we have used the
IdiomaticGuitarist chord shape suggestion to exemplify the workflow
involved in a guitar music performance simulation. The proposed
chord shapes are presented by Figure 85, Figure 86, and Figure 87.

255

Figure 85: First and third chord shapes of the harmonic progression (degree II7).

Source: Own image.

Figure 86: Second chord shape of the harmonic progression (degree VI7).

Source: Own image.

As shown by Figure 85 and Figure 86, the chord shapes for the
II7 and VI7 chords of the sequence are actually the same, but perfor-
med in different regions of the fretboard; note that both are barre-
-chords. The third chord shape (I7 degree chord) is much simpler;
so simple that it does not require more than one finger of the left
hand in order to be performed, as seen in Figure 87.

Figure 87: Fourth chord shape of the harmonic progression (degree I7)

Source: Own image.

256

Once the chord shape is established, the IdiomaticGuitarist uses the
chord shape fingering information to calculate the VD and HD of each
finger (movement). The movement is then passed to the appropriate
(barre or non-barre) speed model to find the order of arrival of the fin-
gers. The speed of each arrival will be predicted using its own model.

Table 31 shows the calculated transition movement between
the barre-chords.

Table 31: Barre-chords transition movement.
The Fret represents the fingerboard location where the chord is meant to be per-
formed, nStr is the number the strings the barre covers, and HMM is the hand
motion. The other attributes are the vertical and horizontal displacements for
the fingers. ‘Mov. ID’ is just a label column and it is not used in the prediction.

Mov. ID Fret nStr HMM MVD MHD RVD RHD LVD LHD

Mov(II7,VI7) 1 2 -5 0 -5 0 -5 0 -5

Mov(VI7,II7) 6 2 5 0 5 0 5 0 5

Unlike from the first three chords of the sequence, the last chord
is not a barre-chord hence it must be described according to the input
format of the non-barre chord models, shown in Table 32. Note that
due to the simplicity of the chord shape, three fingers (M, R, and
L) that were being used in the previous chord shape are no longer
required. In this type of situation, it is impossible to calculate the
fingers’ vertical and horizontal displacements, so the instance attri-
butes are signalised with a ‘-100’ value, which tells the model they
should not be considered.

Table 32: Attributes of the movement transition to a Non-barre chord.
I, M, R, and L represents the finger, Index, Middle, Ring and Little respectively.
VD = vertical displacement, HD = horizontal displacement.

Fret IVD IHD MVD MHD RVD RHD LVD LHD

1 1 0 -100 -100 -100 -100 -100 -100

257

Table 33 shows the predicted speed values (ms) for the tran-
sition of the chord shapes. The slowest predicted movement is the
Mov (VI7,II7) taking 616 ms to be performed. As expected, the faster
movement is Mov (II7,I7) as the index finger, one of the fastest fin-
gers, must move to an adjacent position. The ‘Barre (index)’ column
shows the predicted speeds for the barre position, where P1 = posi-
tion in the first string, P2 = position in the second string.

Table 33: Speed model predictions.
Order is the predicted finger’s arrival order. T1, T2 e T3 is the arrival time.

Barre (index) Order T1 T2 T3

Mov(II7,VI7) P1 – 229 ms
P2 – 338 ms RML 230 381 500

Mov(VI7,II7) P1 – 385 ms
P2 – 385 ms RML 335 446 616

Mov(II7,I7) - IMRL 198 - -

At this point, the speed values are used by the Idiomatic Guitarist
as a limiter to the note duration. For example, in the Mov (VI7,II7)
the little finger is predicted to take 616 ms to reach its position. If
the RhythmPattern indicates that its respective duration is 1000 ms,
then the note linked to the little finger will start with a 616 ms delay
and will last for 1000 – 616 = 384 ms. If the duration is 500 ms, then
the note is skipped (note deletion error).

Once the fingers’ arrival order and timing have been predicted,
the IdiomaticGuitarist move on to the force predictions. Once again,
the prediction must use the appropriate models taking into conside-
ration whether the chord shape uses a barre or not. Table 34 illustra-
tes how the data must be prepared in order to find the force of the
tip-pinch fingers (middle, ring, little) to barre-chord model.

258

Table 34: Format used to find the barre-chords force model.
The Fret represents the fingerboard location where the chord is meant to be
performed, nStrings is the number the strings the barre cover. The other attri-
butes are the vertical and horizontal displacements for the fingers

Fret nStrings nNotes MS MF RS RF LS LF

6 2 2 0 0 4 8 5 9

1 2 2 0 0 4 3 5 4

Table 35 illustrates how the data must be prepared in order to find
the force of the positions of the barre, executed by the index finger.

Table 35: Format used to find the barre positions force model (index finger).
nStr is the number of strings the barre covers. nNotes is the number of notes
the barre produces; pString is the string in which the force is related to. MS,
MF, RS, RF, LS, LF are the string and fret coordinates for the middle, ring and
little fingers respectively;

Fret nStrings nNotes pString MS MF RS RF LS LF

1 2 2 1 0 0 4 3 5 4

1 2 2 2 0 0 4 3 5 4

6 2 2 1 0 0 4 8 5 9

6 2 2 2 0 0 4 8 5 9

The non-barre chord (I7) uses a slightly different and simpli-
fied format because the barre does not need to be specified. This is
shown in Table 36.

Table 36: Format used to find Non-barre chords force models.
The columns represent the string and fret coordinates respectively for the mid-
dle, ring and little fingers;

Fret IS IF MS MF RS RF

1 3 1 0 0 0 0

259

With force values predicted, the IdiomaticGuitarist verifies if
the force is enough to produce a clear note in the IdiomaticGuitar or
a muffled/buzzed note should be produced instead. Table 37 and
Table 38 show the fingering used to perform the chord shapes of
the first (Figure 85) and second (Figure 86) chords of the harmonic
sequence, where the ‘Predicted’ force is compared with the ‘Requi-
red’ force calculated to produce a clean note on the modelled guitar.
The ‘%’ column shows the force percentage ratio of the Predicted x
Required, followed by the quality of the note that is simulated.

Table 37: The predicted force for the first chord shape of the harmonic
sequence (II7 degree).
The ‘%’ column shows the force percentage ratio of the Predicted x Required
force which will determine the ‘quality’ of the predicted note.

String Fret Finger Predicted Required % Quality
1 6 Index (barre) 0.089 0.142 62 Muffled
2 6 Index (barre) 0.11 0.107 102 Clean
4 8 Ring 0.082 0.152 53 Muffled
5 9 Little 0.057 0.152 37.5 Muffled

Table 38: The predicted force for the second chord shape of the harmonic
sequence (VI7 degree).

String Fret Finger Predicted Required % Quality
1 1 Index (barre) 0.145 0.303 47 Muffled
2 1 Index (barre) 0.263 0.230 114 Clean
4 3 Ring 0.063 0.163 38 Muffled
5 4 Little 0.046 0.144 31 Muffled

As noted, most of the predicted force to produce the notes is not
enough to produce clean notes which would add a substantial amount
of noise in this performance. To gain more control over the overall
quality of the notes simulated, it is possible to adjust the predicted
force by multiplying it by a ‘confidence’ constant factor. For example,

260

if the predicted force is multiplied by a factor of 0.6, then we would
have three clean notes, two buzzed notes, and three muffled notes.

The precision errors are last to be calculated because this
involves a completely different approach, as explained in Section
5.2.4 (p. 177).

The data used to train the models used in this example came
from Subject 1, who had the smallest error rate of all three sub-
jects. In order to recreate any error, the similarity threshold had to
be brought down to zero. This means that the error search was too
broad and did not produce errors that were ‘convincing’ from an
empirical point of view.

In other simulations using the data from other subjects and even
artificially created data, we observed that if the similarity threshold
is bellow 0.5 then there is a tendency to produce errors that do not
fit the reality. Of course, the most ‘convincing’ errors occur when
the similarity threshold is equal to 1, but this would require a good
number of examples in the database; the default value of 0.7 presents
a good compromise.

It is important to note that the precision errors have their own
timing and duration values that are extracted from the precision data.
By convention, the default force applied in the precision errors is 50%
of a clear note but this has little relevance at the moment because no
sound can actually be produced yet, as explained in the next section.

OVERALL RESULTS AND FINAL CONSIDERATIONS

Whereas the results presented from the Machine Learning algori-
thms could be quantified using performance measures such as RMSE
and RAE, our integrated solution can only be evaluated by means
of a demonstration of how the Octopus Music API can be equipped
with biomechanical-inspired models.

Naturally, the best approach to verify whether the models and
algorithms actually achieve our goal would be to conduct perceptual

261

listening experiments. However, considering the technological limita-
tions behind the guitar synthesisers that are currently available on the
market, it is impossible to conduct a listening test at present. Never-
theless, this should not deter us from continuing research towards
the future of musical performance by computers. To this end, we
designed an alternative interim solution, which is to display the beha-
viour of the model visually. Hence the main reason we created the
IdomaticGuitarGraphicalInterface component of Octopus Music API.

As previously explained in 5.3.1.2, p. 211, the guitar GUI is
capable of showing the note’s pressure and precision errors based on a
colour scheme. This is just enough to demonstrate that all the models
work together. By way of further work, we can identify some aspects
that need to be addressed to strengthen integration. The first of them
refers to the lack of a force model for the little finger for non-barre
chords. This could be solved by including the little finger in experi-
ments involving recorded chord shapes. Another aspect requiring
further work concerns the current assumption that the barre is per-
formed only with the index finger. Although this is the case most of
the time, there are some rare occasions when the barre might have
to be performed with other fingers. A similar case is a use of the
thumb as a fretting finger, which is considered wrong by the Clas-
sical School of Guitar but it has been used in more popular genres.
These techniques can be modelled in the Octopus Music API, but the
biomechanical-inspired models can not handle them at the moment.

Concerning the delays introduced by the speed models, we
believe that a top-down approach could also produce good results.
This means that, instead of applying delays at a note level, the delay
could be spread throughout a musical phrase, a part, or even the
entire music. However, this feature should be investigated together
with the right hand, which is beyond this book.

More experiments to measure the speed of chord shapes that
demand hand motion would also enrich our training data, conse-
quently increasing the accuracy and prediction power of the models.

262

The use of meta-learners can produce a substantially more
robust model but it also has disadvantages. In Section 5.2.2 (p. 169)
we have explained the Stacking meta-learn scheme that is used to
combine the prediction of a Decision Table, IBK and MP5 algorithms.
In fact, the outcomes of these three inner-schemes are combined
using a linear regression classifier. The problem with this approach
is that when one of these schemes produces predictions that are sig-
nificantly better than the others, it is highly weighted by the linear
model and the influence of the others becomes irrelevant. The pro-
blem is aggravated when learning schemes perform an attribute selec-
tion and select attributes that are very good for the training dataset
but are not good for the prediction of unforeseen examples. In these
circumstances, it is better to sacrifice a low error rate to gain a more
flexible model that provides better overall prediction.

The most efficient way to solve this problem is to invest time in
data capture and preparation to make sure that a significant amount
of representative instances are included in the training set, avoiding
unforeseen instances that are radically different from anything the
algorithm has drawn generalisations from. If this action does not
produce the desired effect then the automatic selection of attributes
of the meta-classifier (a linear regression in our case) may need to
be disabled, which may increase the error rate slightly but also gene-
rate more robust models.

In the case of the precision errors, in which we have developed
our own instance-based ‘learning’ algorithm designed to our parti-
cular context, there are other difficulties. Firstly, it requires manual
adjustment from the ‘user’ to ‘recreate’ convincing errors. If the algo-
rithm is not set up properly it can recreate errors that seem very unli-
kely to occur for the sake of producing an error.

 For instance, if a large KNN number is set or a small similarity
threshold, then errors from movements that are very different from
the original may arise. Since we use absolute coordinates for errors,
they may appear distant from the region where the chord is being

263

performed. Incompatibility of timing and duration is also likely. A
possible solution is to use relative coordinates for the error positions
but this would create other problems when the fingering is unknown
or can not be determined. That said, the problem will only manifest
itself if the similarity threshold or KNN is not set properly.

We look forward to the appearance of suitable Sound Genera-
tor Units on the market that is capable of rendering guitar perfor-
mances with the auditory level required to simulate modelled errors,
as proposed in this book. Our research has certainly provided good
evidence that guitarists indeed do not all play guitar equally from
a biomechanical perspective and this affects the performance. We
sincerely hope that manufacturers of Sound Generator Units would
soon take into account the merit of computational models, such as
the ones proposed in this work, to model and replicate human beha-
viours during guitar performance.

SUMMARY

This Chapter was divided into two parts that approach two different
but related problems in modelling music performance: a) the creation
of a computational tool capable of describing and manipulating all the
nuances of a musical performance from the performer viewpoint; and
b) Machine Learning techniques that can extract patterns of force,
speed and precision of the left-hand fingers when performing chords.

The Octopus Music API is a Java library designed to model
music performance in the lowest possible level of abstraction. In its
basic descriptive form, modelling a music performance can be a very
time-consuming task because the slightest action in a performance
must be explicitly declared. To overcome this issue, we have equipped
Music Interpreters Classes (i.e. Guitarist) with the ‘knowledge’ (rules)
to infer and adapt the performance actions to the context they are
inserted. For instance, a Guitarist must adapt the music performance
to fit the Guitar while a Musician has no such limitation.

264

It soon became obvious that a rule-based approach was not ideal
to model highly complex scenarios, such as the biomechanical system.
Hence, Machine Learning techniques were used to try to find pat-
terns of speed, force and precision that could lead to errors in guitar
performance. The resulting models were integrated into the Octopus
Music API by extending the Guitar and Guitarist classes with its idio-
matic counterparts: IdiomaticGuitar and IdiomaticGuitarist.

At this stage, we can demonstrate that our modelling approach
works. However, integration with a Sound Generation Unit, capable
of rendering the predicted imperfection in performance into sound,
is the next step towards further research into the role of performance
in computer-generated music performance research.

265

Chapter 6

Conclusion

The reasonable man adapts himself to the world; the unrea-
sonable one persists in trying to adapt the world to himself.
Therefore, all progress depends on the unreasonable man.
(George Bernard Shaw).

Some researchers believe that to simulate a truly expressive and
humanised music performance we must first understand the way
we think, perceive, and feel the music. The composer, the interpreter,
and the listener have all been under the scrutiny of scientific investi-
gation that led to the creation of several theories in music cognition
(Juslin and Sloboda, 2001; Palmer, 1997; Shepard, 2002; Sloboda,
2000; Todd, 1989b). We have called this approach behavioural-ba-
sed because they focus on proving cognitional theories that ultima-
tely can be used to create computer-generated music performance.
This approach was discussed in Section 2.3 (p. 30).

Another approach used to program machines to perform music
is to mimic human behaviour without really paying attention to the
underlying processes that trigger certain performance actions. This
approach we have called simulation-based because it focuses on the

http://www.quotationspage.com/quote/2097.html
http://www.quotationspage.com/quote/2097.html
http://www.quotationspage.com/quote/2097.html
http://www.quotationspage.com/quote/2097.html

266

output (simulation) rather than the behaviour, as opposed to the
behaviour-based models. It is in this category that the current com-
putational techniques thrive, including the state of the art AI tech-
niques, as seen in Section 2.2 (p. 27);

As Sundberg (2000) observed, psychological studies of music
performance have provided a wealth of information on musical
expression but they have largely ignored the physical manipulation
of the instrument by the performer. The interaction between humans
and artefacts has been studied in disciplines such as ergonomics, bio-
mechanics, and human factor sciences even though these studies
rarely focus on music performance modelling. In reality, just a few
studies consider the influence of the body in models for musical per-
formance. We have discussed two of them in Section 2.3.5 (p. 35).

It is at the physical level that accidental errors happen, known
as slips. It is a well-known fact in the field of biomechanics that
motions can be made more rapidly in certain ways and directions
because of the nature of the human physical structures (Rosenbaum,
1996). These physical structures can limit the movement speed which
would eventually induce errors. The biomechanical, physiological,
and anatomical properties of the human body during a guitar per-
formance were presented in Section 3.2 (p. 64).

We have seen that muscle strength, speed, and endurance can
indeed affect music performance. For instance, we have shown that the
index finger needs at least 20 ms to generate enough power to produce a
clean note in a guitar (Section 3.2.3.3, p. 79). Curiously, this is the same
amount of time that Pisoni (1977) reported for listeners to be able to dis-
tinguish temporal differences between two successive acoustic events.

The forces required to deflect a string in a real guitar were both
calculated and measured; the average calculated force to produce a
clean note was found to be 223 grams and the average measured force
was 423 grams. If not enough force is applied to stop the string, a
muffled or a buzzed note is likely to be produced instead. De facto,
we have found that a buzzed-note requires on average 75% of the

267

force necessary to produce a clean note. The mechanics of the gui-
tar, including the string deflection calculations and measurements,
were discussed in Section 3.1 (p. 47).

Muffled and buzzed notes are especially relevant to this book
because they are the direct result of the finger’s inappropriate use of force.
Unfortunately, these two particular ‘noises’ have not yet been suppor-
ted by modern synthesis techniques (not even those based on physical
modelling techniques), although it is acknowledged that noise can be an
important part of instrument tone, as explained in Section 2.5 (p. 42).

Even if currently available synthesizers were able to support
noise in musical performances, there would still be the problem of
controlling it; for instance, when and how they should occur. By
‘noise’ here we mean the result of those unintentional actions origi-
nating from the motor and biomechanical functions that we have dis-
cussed throughout this book. When we started this research, nothing
could be found in the literature addressing this issue. Much inves-
tigation is required to ascertain when a note should have its sound
quality intact or some form of ‘noise modulation’ should be produ-
ced instead. In an attempt to understand that, we have designed a set
of experiments to measure not only the force produced in a multi-
-finger task (playing a guitar chord) but also its speed and precision.

Since an integrated measuring device capable of recording the
force, speed and precision of the finger in a guitar performance does
not exist we had to design and build our own device: FoGu. The full
description of the experiments is reported in 0 (p. 47).

The speed results have shown that certain chords can be per-
formed twice as fast as others, with the average speed required for
a chord to be performed around 350 ms. As expected, chord shapes
that better suit the hand’s anatomy, such as A and E chords, presen-
ted a smaller speed variation between the subjects, respectively at 36
and 24 ms. This evidence contributes to the belief that biomechani-
cal constraints can indeed delay some actions in music performance.
All the speed results are found at Section 4.2.4 (p. 96)

268

The force results have shown that the average force distribution
among the fingers is slightly different from what is found in the litera-
ture, where the middle finger is usually the main force producer. In our
experiment, the index finger was the main contributor with 32% of force
produced, followed the middle, ring and little fingers with 30, 21 and
17% respectively. The average force the guitarists believed was neces-
sary to produce a clean note was around 147 grams/f. The full analy-
sis of the force measurements can be seen in Section 4.3.4.1 (p. 116).

The posture and motion analysis revealed surprising results.
From the three articulations measured (wrist, elbow and shoulder),
the elbow was the one which presented the highest level of motion.
We initially believed that the wrist would be more important. These
results must be handled with care because the equipment used was
limited to measuring just a few degrees of freedom of articulation,
especially the wrist movements. A full discussion of the posture
results is presented in Section 4.3.4.2 (p. 125)

Although the results of the experiments have disclosed interes-
ting evidence to support the notion that biomechanical constraints
indeed interfere with music performance, we have opted to not trans-
late these findings straight to production rules that could be used to
simulate music performance. Instead, we adopted a machine learning
approach. We envisage that in the future systems should be able to
learn these rules and for this reason, we used machine learning (ML).

In order to choose suitable ML algorithms for the tasks at hand,
we adopted a toolbox approach: several algorithms were tried and
those that performed better were selected. An open-source framework
known as WEKA (Witten and Frank, 2002) was essential for this job.

Before the data could be presented to the ML algorithms, it had
to be prepared, this involved the removal of outliers, attribute selec-
tion, and even the creation of attributes that highlight relationships.
The data preparation for barre and non-barre chords was done sepa-
rately due to the biomechanical difference in the type of handgrip
required to perform them.

269

To predict the speed we used a combination of numeric pre-
diction learning algorithms: instance-based IBK1, a Decision Table,
and Mode tree (MP5). The outputs of these three algorithms were
combined using the Stacking meta-learner that used a Linear Regres-
sion as the classifier.

The average learning error rate for non-barre chords was 10.41%
RAE with an average confidence of over 99%. For the barre-chords,
the RAE was on average 9.86% with confidence also over 99%.

Because speed refers to a movement (dynamic) instead of a static
posture, we model the ‘arrivals’ instead of the fingers; all three ‘arrival’
models were modelled independently from each other. The arrival
time is only relevant if the finger’s arrival order can also be predicted.
This was done using a combination of classification learning algo-
rithms: Random Forest, Random Committee/Random Tree, and
instance-based IBK. The predictions were combined using Bagging
(voting) meta-learning, so the algorithms were selected based on
their results rather than on the way they theoretically suit the data.

Using the combination of algorithms mentioned above we have
achieved positive classifications of 97.7% for non-barre chords and
99% for barre chords. The full explanation of the modelling of speed
data can be found at Section 5.2.4 (p. 177).

The models for force prediction were created using a similar pro-
cedure used to model the speed, but instead of modelling the ‘arrival’
we modelled the force of the fingers because there was no movement
involved, in other words, it was a static effort in which the fingering
was known beforehand. Each finger was modelled independently.

The learning algorithms were the same used for speed model-
ling, with one exception: we replaced the model tree with another
tree of numerical prediction known as a regression tree (REPTree).
They work similarly, but the REPTree produced better results with
the force data.

The learning rates for the force data were not as good as for
speed, averaging 20% RAE with average confidence over 97% for

270

non-barre chords; barre-chords had an average RAE of 17.8% with
confidence also over 97%. We believe that learning performance was
harmed by noisy data caused by technical problems with the force
sensors, as reported in Section 5.2.5 (p. 189).

The precision data required different treatment due to the scarce
number of examples. Instead of using a standard learning techni-
que of WEKA, we decided to implement a custom instance-based
(k-Nearest-Neighbour) algorithm. The advantages and disadvanta-
ges of this approach are discussed in Section 5.2.6 (p. 200).

In order to try the models in a musical context, the speed and
force models were integrated into framework designed to simulate
musical performance. This framework, named Octopus Music API,
has also served as the basis for the implementation algorithm that
recreates precision errors.

The main idea behind a framework like the Octopus Music API is
to facilitate the modelling of music performance by transferring some
of the knowledge involved in adjusting a piece to music to a particular
instrument to the system. This was done by creating three categories of
classes to represent the performance elements: a) Musical Data Struc-
ture; b) Musical Data Interpreters; and c) Musical Instrument Classes.

Musical Data Interpreter classes, such as the Guitarist, know how
to read the Musical Data Structures (i.e. Music, Harmony, Chord etc)
and adapt the musical information to the limitations of the Instru-
ment (i.e. Guitar), as shown in Section 5.1, p. 135. The force, speed
and precision modelling have extended this adjustment to also con-
sider some of the performer’s physical limitations. The integration
of the Octopus Music API with the biomechanical-inspired model
was discussed in Section 5.3 (p. 208).

CONTRIBUTIONS TO KNOWLEDGE

The contributions to the knowledge of this book are presented below
in two sections. Firstly we indicate how the book answered the three

271

overarching motivation questions posed in Chapter 1. Then, further
contributions to knowledge are indicated in the context of the five
research objectives, also introduced in Chapter 1

Answers to the Motivation Questions

Do unintentional actions originating from the motor and biomechanical
functions during musical performances contribute to the ‘human feel’
found in the performance?

As demonstrated in Sections 4.2.4 (p. 96) and 4.3.4 (p. 116) the ans-
wer to this question is yes. We proved that the unintentional actions
originating from the motor and biomechanical function do impact the
quality of music performance. We understand unintentional actions as
slips, a category of error in which the correct action was planned (cog-
nitive side) but, for some reason, it was not delivered. By modelling
the motor and biomechanical system we can, at least in part, recreate
the human aspect of a musical performance by reintroducing the errors
that are lacking in computer-generated musical performances.

Would it be possible to determine and quantify what such unintentional
actions are?

Again, the answer to this question is yes. In 0 (p. 47) we presented
a methodology for acquiring and analysing the data for such unin-
tentional actions in guitar performance. We focused on measuring
the speed, force, and precision of the guitarist left-hand when per-
forming the chords.

We have used three experienced guitarists in our experiments.
The tasks in the experiment involved the performance of simple
and familiar chord shapes. To measure the speed and precision data
we used a guitar-like MIDI controller. The force was measured on
a custom-build device shaped in the form of a guitar.

272

The results obtained confirmed that the level of effort requi-
red to perform certain actions in guitar performance can induce
errors. Moreover, it showed that subjects have a distinct way to per-
form those actions, making them more prone to certain types of
errors than others.

Would it be possible to model and embed such information in computer
systems for music performance?

Yes, it is possible to model and use this information in computer sys-
tems to simulate music performance, as demonstrated in 0 (p. 131).
The modelling of force and speed was done using a combination of
ML algorithms that achieved a combined average of Relative Abso-
lute Error (RAE) for predictions under 15%, with confidence over
98%. The algorithms, the data preparation procedure, the training
strategy, and the results are described in Section 0 (p. 164).

We have also presented the Octopus Music API, which is a
library designed to model musical performances (Section 5.1, p.
135). The biomechanical-inspired models were incorporated into
the Octopus Music API so performance errors can be predicted and
automatically inserted into a simulated guitar performance without
having to be manually specified. More details of this integration are
found in Section 5.3 (p. 208).

Approach to the book’s overreaching goals

Understand gaining of the guitar mechanics, ergonomics, and playability.

In Chapter 3 (Section 3.1, p. 47) we presented a study supported by
extensive reference to relevant literature on the mechanics, ergo-
nomics and playability of the guitar. The focus of the study was on
the physical actions that must be performed on the guitar to pro-
duce sounds, rather than the acoustical properties of the sound. One

273

particular type of sound resulting from the performer’s motor and
biomechanical limitations was covered in-depth, the noises from
muffled and buzzed noted (Section 3.1.6, p. 56).

The understanding gained of how the human body conforms to physical
actions in a musical performance.

Another aspect covered by Chapter 3 (Section 3.2, p. 64) is how the
human body conforms to physical actions in guitar performance from
the biomechanical and physiological point of view. It is the first time
that a study of this kind has focused on guitar performance.

To understand the stress that the body is subjected to in gui-
tar performance, we first established the movements and postures
required by the classical guitar technique (Section 3.2.2, p. 66). Then
the muscles and articulations involved in those physical actions were
studied to determine the power, speed and precision that they are
capable of delivering (Section 3.2.3, p. 74).

Development of a methodology to formalise quantifiable data about
physical performing actions found in guitar performance.

In 0 (p. 47) we proposed a methodology to record and process the
force, speed, and precision of the guitarist’s left-hand when perfor-
ming chords shapes. It is the first time that a multi-finger task rela-
ted to guitar performance has been measured.

The speed and precision were already partially measured by
Heijink and Meulenbroek (2002) but they were limited to single-fin-
ger tasks (playing a scale). Results and comparison with this study
were reported in Section 4.2.4 (p. 96). Force measurements in guitar
performance could not be found in the literature. Perhaps because
a commercial measuring tool suitable for the task does not exist.
In Section 4.3 (p.106) we described how we captured this data and
what they revealed.

274

An approach to model the biomechanical data.

In 0 (p. 131) we demonstrated an approach to model the speed, force,
and precision data using Machine Learning (ML) techniques. The
obvious advantage of the ML over the rule-based approach is that the
ML algorithms automatically learn the guitarist’s physical and perfor-
ming differences, allowing the system to model a particular individual
rather than search for generalised rules that cover most of the cases.

As previously said, a vast amount of effort in data mining is dedi-
cated to data preparation. By presenting a successful way of doing it,
we have significantly contributed to any research that may follow.

Demonstration of how the proposed modelling approach can be embedded
in a computer system for music performance

In the first section 0 (Section 5.1, p. 135) we proposed an approach
to developing systems for music performance, which give the users
the power to implement such systems themselves; to implement bes-
poke systems addressing their specific needs. As result, we designed
Octopus Music API, which is a Java library that introduces a uni-
que way to model musical performance by specifying not only the
musical but also the performer and instrument aspects involved in
the performance.

By modelling the three main elements of a music performance –
the performer, the instrument, and the music - the Octopus Library
is capable of automatically adjusting the performance actions accor-
ding to the limitations of each of those elements, so the user does not
have to do so. This approach is better because – for example – dif-
ferent styles of music may require different performance strategies;
different musical instruments require different performance infor-
mation and indeed, different performers perform music differently.

The mechanics of the guitar described in Section 3.1 (p. 47) and the
biomechanical aspects of the performer, described in Section 3.2 (p. 64)

275

and measured in 0, p. 47, were incorporated into the Octopus through
the use of Machine Learning techniques described in Section 0 (p. 164).
A full example of this integration was presented in Section 5.3 (p. 208)

Final thoughts on the future of the field

We have already mentioned several times throughout this book that
a full verification of the impact of the errors in a computer-genera-
ted musical performance is only possible when the acoustical proper-
ties of the errors, in the form of noises, can also be modelled. So, the
first recommendation for future works is the integration of Idioma-
tic classes of the Octopus Music API with a Sound Generation Units
that can handle the sound synthesis in the level of detail modelled
by the Octopus, such as the work of Bader(2009), Erkut et al. (2000),
Laurson et al. (2001), Laurson et al. (2005), Poepel, (2004a), and Vali-
maki et al.(1996) among others.

Another step forward would be the integration of the biomecha-
nical-inspired models with the cognitive-inspired models of musical
performance, such as those proposed by Thompson (2006), Sloboda
(2000), or Todd (1989b).

An important aspect that has been left out of our analysis is
right-hand. The right-hand has a significant role in controlling per-
formance timing and consequently the delays. However, the syn-
chronism of the hands must be investigated for precise use of motor
and biomechanical delays. The right-hand is also responsible for
sound ‘intensity’ and consequently the accentuation of the notes.
Naturally, this is also subjective to errors that were not in the scope
of this research.

An issue that has not been appropriately exploited by our expe-
riments is the correlation between posture and force. This was due
to the lack of a synchronisation mechanism between the force and
posture measuring devices. Since this correlation could not be finely
established, we opted to not use the posture data at this stage.

276

Regarding speed and precision modelling, we would like to
implement them in the form of a continuous learning process. Hence,
instead of passing pre-generated models as arguments to the Idioma-
ticGuitarist, the algorithms would be embedded in it and would be
generated at the moment of instantiation or whenever requested.
This feature would make possible the use of an inexpensive MIDI
guitar to continuously feed the models. Fatigue, learning rate, musi-
cal style, and other factors could then have their relevance accessed
and incorporated into the models.

An update of the force model may not be feasible because of the
specialised device used to record the data. Therefore, more experi-
ments could be beneficial, although, in data mining, more data is
not necessarily good for learning. Even though the amount of data
at our disposal was adequate to validate the proposed methodology,
in retrospect we would like to have chosen more non-barre chords
that make use of the little finger. The hand motion effect is another
aspect that could have been investigated further with more exam-
ples. Perhaps, the way forward consists of using data captured from
real guitar performances.

Finally, the development of the Octopus Music API is a con-
tinuous process, since it has been freely available and used by the
community since 2007. We are keen to welcome new developers by
turning the Octopus into an open-source project. One of the most
interesting suggestions made by the community of users includes the
creation of a graphical programming interface which would make
the Octopus more user-friendly to non-programmers users and fit
to live coding performances.

277

Bibliography

Aha, D. W., Kibler, D. and Albert, M. K. 1991. Instance-Based Lear-
ning Algorithms. Machine learning, 6, (1) 37--66.

Animazoo. 2009. Gypsy-6. Available online at: http://www.anima-
zoo.com/Gypsy6.aspx. Accessed: September 2009

Bader, R. 2009. Real Time Guitar Radiation Sound Synthesis of For-
ced String and Body Eigenfrequency Vibrations Using Microphone
Array Techniques. The Journal of the Acoustical Society of Ame-
rica, 125, (4) 2515.

Baily, J. 1985. Music Structure and Human Movement. Acade-
mic Press, London , UK. 237-58 pp.

Bean, K. L. 1939. Reading Music Instead of Spelling It. Journal of
Musicology, 1, (1) 1-5.

Bejjani, F. J. and Halpern, N. 1989. Postural Kinematics of Trumpet
Playing. Journal of Biomechanics, 22, (5) 439--446.

278

Bellman, R. 1961. Adaptive Control Processes: A Guided Tour.
Princeton University Press, Princeton, New Jersey, U.S.A.

Bennett, A. and Dawe, K. 2001. Guitar Cultures. Berg, Oxford, UK.

Beran, J. and Mazzola, G. 1999. Analyzing Musical Structure and Per-
formance - a Statistical Approach. Statistical Sciefnce, 14, (1) 47--79.

Bilitski, J. 2005. A Machine Learning Approach for Automatic
Performance of a Trumpet. Selvaraj, H., Verma, B. and DeCar-
valho, A. (Eds). 6th International Conference on Computational
Intelligence and Multimedia Applications. Las Vegas, NV. Aug
16-18. pp 80-85.

Booch, G., Maksimchuk, R., Engle, M., Young, B., Conallen, J. and
Houston, K. 2007. Object-Oriented Analysis and Design with
Applications. Addison-Wesley Professional

Breiman, L. 2001. Random Forests. Machine learning, 45, (1) 5--32.

Burns, A.-M. and Wanderley, M. 2006. Visual Methods for the
Retrieval of Guitarist Fingering. New interfaces for musical expres-
sion. IRCAM - Centre Pompidou, Paris, France.

Cabena, P., Stadler, R. and Zanasi, A. 1998. Discovering Data
Mining: From Concept to Implementation. Prentice-Hall, Inc.
Upper Saddle River, NJ, USA.

Card, S. K., Moran, T. P. and Newell, A. 1983. The Psychology of
Human-Computer Interaction. L. Erlbaum Associates, Hillsdale, N.J.

Carlevaro, A. 1984. School of Guitar: Exposition of Instrumen-
tal Theory. Boosey & Hawkes.

279

Chao, E. Y. 1989. Biomechanics of the Hand: A Basic Research
Study. World Scientific Publishing Company.

Chapman, R. 1994. The Complete Guitarist. Dorling Kindersley.

Clarke, E. F. 1988. Generative Principles in Music Performance.
Generative Processes in Music: The Psychology of Perfor-
mance, Improvisation, and Composition. Clarendon Press/
Oxford University Press, New York, NY. pp 1-26.

Clarke, E. F. 1993. Generativity, Mimesis and the Human Body in
Music Performance. Contemporary Music Review, 9, (1) 207--219.

Costalonga, L. and Viccari, R. M. 2004. Multiagent System for Gui-
tar Rhythm Simulation. International Conference on Computing,
Communications and Control Technologies. Austin, Texas, USA.

Costalonga, L. L., Miletto, E. M., Flores, L. V. and Vicari, R. M. 2005.
Bibliotecas Java Aplicadas a Computação Musical. Simposio Brasi-
leiro de Computacao Musical. Belo Horizonte – MG, Brazil.

Costalonga, L. L. and Miranda, E. R. 2006. Idiomatic Guitar Synthe-
sis. Journal of the Acoustical Society of America, 119, (5) 3441.

Costalonga, L. L., Vicari, R. M. and Miletto, E. M. 2008. Agent-Ba-
sed Guitar Performance Simulation. Journal of the Brazilian Com-
puter Society, 14, (3) 19--29.

Cuzzucoli, G. and Lombardo, V. 1999. A Physical Model of the Clas-
sical Guitar, Including the Player’s Touch. Computer Music Jour-
nal, 23, (2) 52--69.

280

Dahl, S. 2006. Movements and Analysis of Drumming. In: Alten-
muller, Eckhart, Wiesendanger, Mario, Kesselring and Jurg (Eds).
Music, Motor Control and the Brain. Oxford University Press,
New York, NY, US. pp 125--138.

Danion, F. and Galléa, C. 2004. The Relation between Force Mag-
nitude, Force Steadiness, and Muscle Co-Contraction in the Thumb
During Precision Grip. Neuroscience Letters, 368, (2) 176--180.

Dannenberg, R. B. 1993. A Brief Sruvey of Music Representation Issues,
Techniques, and Systems. Computer Music Journal, 17, (3) 20--30.

Dannenberg, R. B. 1997. The Implementation of Nyquist, a Sound
Synthesis Language. Computer Music Journal, 21, (3) 71--82.

Das, M., Howard, D. M. and Smith, S. L. 2001. The Kinematic Analy-
sis of Motion Curves through Midi Data Analysis. Organised Sound,
4, (3) 137--145.

De Poli, G. 2004. Methodologies for Expressiveness Modelling of and
for Music Performance. Journal of New Music Research, 33, (3) 189.

Dell, G. S. 1986. A Spreading-Activation Model of Retrieval in Sen-
tence Production. Psychological Review, 93, (3) 283--321.

Denyer, R. 1992. The Guitar Handbook. (2 ed) Pan Bks., London.

Desain, P. and Honing, H. 1992. Music, Mind and Machine: Stu-
dies in Computer Music, Music Cognition and Artificial Intel-
ligence. Thesis, Amsterdam.

281

Desain, P. and Honing, H. 1994. Does Expressive Timing in Music
Performance Scale Proportionally with Tempo? Psychological
Research, 56, (4) 285--292.

Desain, P., Honing, H. and Heijink, H. 1997. Robust Score-Per-
formance Matching: Taking Advantage of Structural Infor-
mation. International Computer Music Conference. Thessalonki,
Greece. pp 337--340.

Dietterich, T. G. 2000. Ensemble Methods in Machine Learning.
Lecture Notes in Computer Science. Springer Berlin Berlin,
Germany. pp 1--15.

Dixon, S., Goebl, W. and Widmer, G. 2002. The Performance
Worm: Real Time Visualisation of Expression Based on Lang-
ner’s Tempo-Loudness Animation. International Computer Music
Conference Goteborg, Sweeden.

Dixon, S., Goebl, W. and Widmer, G. 2005. The “Air Worm”: An
Interface for Real-Time Manipulation of Expressive Music Perfor-
mance. Proceedings of the International Computer Music Con-
ference (ICMC’2005),

Dodig-Crnkovic, G. 2002. Scientific Methods in Computer Science.
Conference for the Promotion of Research in IT at New Universities
and at University Colleges in Sweden. Skovde, Sweden. Available online
at: http://www.mrtc.mdh.se/index.php?choice=publications&id=0446.

Dogantan-Dack, M. 2006. The Body Behind Music: Precedents and
Prospects. Psychology of Music, 34, (4) 449--464.

http://www.mrtc.mdh.se/index.php?choice=publications&id=0446

282

Doyle, J. R., Botte, M. J. and Krames, C. 2003. Surgical Anatomy
of the Hand and Upper Extremity. Lippincott Williams & Wil-
kins Philadelphia.

Drake, C. and Palmer, C. 1993. Accent Structures in Music Perfor-
mance. Music Perception, 10, (3) 343--378.

Edwards, B. 1983. Fretboard Logic: The Reasoning Behind
the Guitar’s Unique Tuning Edwards Music Pub, Temple Ter-
race, Florida - USA.

Embry, D. E. 1986. Sherpa: A Systematic Human Error Reduction
and Prediction Approach. International Topical Meeting on Advan-
ces in Human Factors in Nuclear Power Systems. Knoxville, TN.

Ericsson, K. A. 1993. The Role of Deliberate Practice in the Acquisition
of Expert Performance. Psychological Review, 100, (3) 363--406.

Erkut, C., Valimaki, V., Karjalainen, M. and Laurson, M. 2000.
Extraction of Physical and Expressive Parameters for Model-Based
Sound Synthesis of the Classical Guitar. 108th Audio Engineering
Society Convention. New York, NY.

Evans, T. and Evans, M. A. j. a. 1977. Guitars: Music, History,
Construction and Players from the Renaissance to Rock / Tom
and Mary Anne Evans. Paddington Press: distributed by Grosset
& Dunlap, New York :.

Farga, F. 1969. Violins & Violinists. Barrie & Jenkins.

Faulkner, J. A., Claflin, D. R. and McCully, K. K. 1986. Power Output
of Fast and Slow Fibers from Human Skeletal Muscles. In: N.L. Jones,

283

N.M., and A.J. Comas (Ed). Human Muscle Power. Human Kine-
tics Pub Champaign, IL. pp 81--91.

Faulkner, J. A., Jones, D. A., Round, J. M. and Edwards, R. H. T. 1980.
Dynamics of Energetic Processes in Human Muscle. Internatio-
nal Symposium on Exercise Bioenergetics and Gas Exchange. Milan,
Italy. Elsevier-North-Holland Biomedical Press. pp 81.

Fernández, L. and Rodemann, N. R. 2005. Flamenco Music Theory:
Rhythm, Harmony, Melody, Form. Acordes Concert Sl.

Fitts, P. M. 1954. The Information Capacity of the Human Motor
System in Controlling the Amplitude of Movement. Journal of
Experimental Psychology, 47, (3) 381--391.

Fix, E. 1951. Discriminatory Analysis. Nonparametric Discrimina-
tion: Consistency Properties. Reprinted in Silverman, Bw and Mc
Jones (1989), E. Fix and Jl Hodges (1951):” an Important Contribu-
tion to Nonparametric Discriminant Analysis and Density Estima-
tion”. International Statistical Review, 57, (3) 233-–247.

Fraisse, P. 1982. Rhythm and Tempo. In: Deutsch, D. (Ed). The
Psychology of Music. Lawrence Erlbaum Associates. pp 149--180.

Freitas, A. A. 2002. Data Mining and Knowledge Discovery with
Evolutionary Algorithms. Springer Verlag.

Freivalds, A. 2004. Biomechanics of the Upper Limbs: Mecha-
nics, Modeling, and Musculoskeletal Injuries. CRC Press.

Friberg, A. 1995. A Quantitative Rule System for Musical Perfor-
mance. Doctoral Thesis. Royal Institute of Technology, Stockholm.

284

Friberg, A., Bresin, R. and Sundberg, J. 2006. Overview of the Kth
Rule System for Musical Performance. Advances in Cognitive
Psychology, 2, (2-3) 145--161.

Gabrielsson, A. 1999. The Performance of Music. In: Deutsch, D.
(Ed). The Psychology of Music. Academic Press, San Diego, CA,
US. pp 501--602.

Gareth, L. and Curtis, A. 1985. Programming Languages for Com-
puter Music Synthesis, Performance, and Composition. ACM Com-
put. Surv., 17, (2) 235--265.

Garrett, M. F. 1980. Levels of Processing in Sentence Production. In:
Butter-worth (Ed). Language Production. Academic Press, Lon-
don, UK. pp 177--220.

Gilbert, J., Ponthus, S. and Petiot, J. F. 1998. Artificial Buzzing Lips
and Brass Instruments: Experimental Results. The Journal of the
Acoustical Society of America, 104, (3) 1627.

Gilden, D. L. 2001. Cognitive Emissions of 1/F Noise. Psychologi-
cal Review, 108, (1) 33-56.

Gilden, D. L., Thornton, T. and Mallon, M. W. 1995. 1/F Noise in
Human Cognition. Science, 267, (5205) 1837.

Grandjean, E. 1988. Fitting the Task to the Man. Taylor &
Francis, New York.

Hago. 2009. Guitar String Deflection Calculations. Available online
at: http://www.hago.org.uk/faqs/formulae-2.php. Accessed:
September 2009.

http://www.hago.org.uk/faqs/formulae-2.php

285

Haslinger, B., Erhard, P., Altenmüller, E., Hennenlotter, A., Sch-
waiger, M., Gräfin von Einsiedel, H., Rummeny, E., Conrad, B. and
Ceballos-Baumann, A. O. 2004. Reduced Recruitment of Motor
Association Areas During Bimanual Coordination in Concert Pia-
nists. Human Brain Mapping, 22, (3) 206--215.

Heijink, H. and Meulenbroek, R. G. J. 2002. On the Complexity of
Classical Guitar Playing: Functional Adaptations to Task Constraints.
Journal of Motor Behavior, 34, (4) 339--351.

Henderson, M. T. 1936. Rhythmic Organization in Artistic Piano
Performance. In: Seashore, C.E. (Ed). Objective Analysis of Musi-
cal Performance. Univ. of Iowa Studies in the Psychology of Music,
Iowa City: University of Iowa. pp 281--305.

Heuer, H. 1991. Invariant Relative Timing in Motor-Program
Theory. Advances in psychology, 81, 37--68.

Hill, A. V. 1938. The Heat of Shortening and the Dynamic Constants
of Muscle. Proceedings of the Royal Society of London. Series
B, . Biological Sciences, London. pp 136--195.

Hogan, N. 1985. The Mechanics of Multi-Joint Posture and Move-
ment Control. Biological Cybernetics, 52, (5) 315--331.

Honing, H. 2001. From Time to Time: The Representation of Timing
and Tempo. Computer Music Journal, 25, (3) 50--61.

Honing, H. 2003. The Final Ritard: On Music, Motion, and Kinema-
tic Models. Computer Music Journal, 27, (3) 66--72.

Honing, H. 2006a. Computational Modeling of Music Cognition: A
Case Study on Model Selection. Music Perception, 23, (5) 365--376.

286

Honing, H. 2006b. Evidence for Tempo-Specific Timing in Music
Using a Web-Based Experimental Setup. Journal of Experi-
mental Psychology: Human Perception and Performance,
32, (3) 780--786.

Iberall, T., Preti, M. J. and Zemke, R. 1989. Task Influence on Timing
and Grasp Patterns in Human Prehension. Society of Neuroscience
Abstracts, 15, (1) 397.

Instron. 2009. Instron Universal Testing Machines. Available online
at: http://www.instron.co.uk/wa/products/universal_material/5560.
aspx. Accessed: September 2009.

Jacobs, J. P. 2001. Refinements to the Ergonomic Model for Keyboard
Fingering of Parncutt, Sloboda, Clarke, Raekallio, and Desain. Music
Perception, 18, (4) 505--511.

Jebsen, R. H., Taylor, N., Trieschmann, R. B., Trotter, M. J. and
Howard, L. A. 1969. An Objective and Standardized Test of Hand
Function. Archives of Physical Medicine and Rehabilita-
tion, 50, (6) 311.

Johansson, R. S. 1996. Sensory Control of Dexterous Manipulation
in Humans. Hand and Brain: The Neurophysiology and Psycho-
logy of Hand Movements. pp 381–414.

Johns, M. V. 1961. An Empirical Bayes Approach to Non-Parame-
tric Two-Way Classification. In: Solomon, H. (Ed). Studies in Item
Analysis and Prediction. Stanford University Press. pp 221--232.

Johnson, E. W. and Olsen, K. J. 1960. Clinical Value of Motor Nerve
Conduction Velocity Determination. Journal of the American
Medical Association, 172, (18) 2030--2035.

http://www.instron.co.uk/wa/products/universal_material/5560.aspx
http://www.instron.co.uk/wa/products/universal_material/5560.aspx

287

Juslin, P. N. 2003. Five Facets of Musical Expression: A Psycholo-
gist’s Perspective on Music Performance. Psychology of Music,
31, (3) 273--302.

Juslin, P. N., Friberg, A. and Bresin, R. 2002. Toward a Computatio-
nal Model of Expression in Music Performance: The Germ Model.
Musicae Scientiae, 6, (1) 63--122.

Juslin, P. N. and Sloboda, J. A. 2001. Music and Emotion Theory
and Research. Oxford University Press, Oxford.

Karjalainen, M., Välimäki, V. and Janosy, Z. 1993. Towards High-
-Quality Sound Synthesis of the Guitar and String Instruments. Inter-
national Computer Music Conference. Tokyo, Japan. 56-63.

Kendall, R. A. and Carterette, E. C. 1990. The Communication of
Musical Expression. Music Perception, 8, (2) 129-164.

Kohavi, R. 1995. The Power of Decision Tables. Proceedings
of the European Conference on Machine Learning. Springer Ver-
lag. pp 174-189.

Kong, Y. K. and Freivalds, A. 2003. Evaluation of Meat-Hook
Handle Shapes. International Journal of Industrial Ergono-
mics, 32, (1) 13-23.

Kumar, S. 2004. Muscle Strength. CRC Press, Danvers, MA, USA.

Kuncheva, L. I. 2004. Combining Pattern Classifiers: Methods
and Algorithms. Wiley-Interscience, Hoboken, NJ, USA.

288

Laurson, M. 2000. Real-Time Implementation and Control of a Clas-
sical Guitar Synthesizer in Supercollider. Proceedings of the 2000
International Computer Music Conference, 74-77.

Laurson, M., Erkut, C., Valimaki, V. and Kuuskankare, M. 2001.
Methods for Modeling Realistic Playing in Acoustic Guitar Synthe-
sis. Computer Music Journal, 25, (3) 38-49.

Laurson, M., Norilo, V. and Kuuskankare, M. 2005. Pwglsynth: A
Visual Synthesis Language for Virtual Instrument Design and Con-
trol. Computer Music Journal, 29, (3) 29-41.

LeVan, J. 2005. Classic Guitar Care and Setup. Mel Bay Publications.

Loy, G. and Abbott, C. 1985. Programming-Languages for Compu-
ter Music Synthesis, Performance, and Composition. Computing
Surveys, 17, (2) 235-265.

Luger, G. F. 2002. Artificial Intelligence: Structures and Stra-
tegies for Complex Problem Solving. (5th ed) Addison Wesley
Publishing Company, Harlow, UK.

Lysloff, R. T. A. and Matson, J. 1985. A New Approach to the Clas-
sification of Sound-Producing Instruments. Ethnomusicology,
29, (2) 213-236.

MacKenzie, C. L. and Van Eerd, D. L. 1990. Rhythmic Precision in
the Performance of Piano Scales: Motor Psychophysics and Motor
Programming. Attention and Performance Xiii. Lawrence Erl-
baum Associates, Hillsdale, NJ, USA. pp 375-408.

289

Madsen, S. T. and Widmer, G. 2006. Exploring Pianist Performance
Styles with Evolutionary String Matching. International Journal
on Artificial Intelligence Tools, 15, (4) 495-513.

Marshall, M. M., Mozrall, J. R. and Shealy, J. E. 1999. The Effects
of Complex Wrist and Forearm Posture on Wrist Range of Motion.
Human factors, 41, (2) 205.

Mathews, M. V. and Moore, F. R. 1970. Groove—a Program to Com-
pose, Store, and Edit Functions of Time. Communications of the
ACM, 13, (12) 715-721.

Mathiowetz, V., Kashman, N., Volland, G., Weber, K., Dowe, M.
and Rogers, S. 1985. Grip and Pinch Strength: Normative Data for
Adults. Arch Phys Med Rehabil, 66, (2) 69-74.

Maurer, J. J., Singer, M. A. and Schieber, M. H. 1995. Fiber Type
Composition of Morphologic Regions in the Macaque Multitendo-
ned Finger Muscles. Acta Anatomica, 154, (3) 216-223.

Mazzola, G. 2002. Performance and Interpretation. Journal of New
Music Research, 31, (3) 221-232.

McCartney, J. 2002. Rethinking the Computer Music Language:
Supercollider. Computer Music Journal, 26, (4) 61-68.

Meister, D. 1989. Conceptual Aspects of Human Factors. Johns
Hopkins University Press Baltimore.

Meyer, J. 1983. Quality Aspect of the Guitar Tone. Committee
for the Acoustics of Music Conference. Royal Swedish Academy of
Music. pp 51-75.

290

Mitchell, T., Buchanan, B., DeJong, G., Dietterich, T., Rosenbloom,
P. and Waibel, A. 1990. Machine Learning. Annual Reviews in
Computer Science, 4, (1) 417--433.

Mizuno, M. 1994. P-31-Nmr Spectroscopy, Rsemg, and Histoche-
mical Fiber Types of Human Wrist Flexor Muscles. Journal of
Applied Physiology, 76, (2) 531-538.

Mizuno, T. and Takashima, S. 2001. Development of an Automatic
Playing Robot of Bamboo Flute. Experimental Analysis of Fingering
System and Artificial Mouth. Nippon Kikai Gakkai Robotikusu,
Mekatoronikusu Koenkai Koen Ronbunshu, 2001, (1) 12.

Moore, B. C. J., Peters, R. W. and Glasberg, B. R. 1993. Detection
of Temporal Gaps in Sinusoids: Effects of Frequency and Level. The
Journal of the Acoustical Society of America, 93, (3) 1563.

Mottola, R. M. 2006. Calculating Fret Positions. Available online at:
www.liutaiomottola.com/formulae/fret.htm. Accessed: June 2008.

Naofumi Aoki, S. T., Eiichi Kishimoto, Seiki Yasuda, and Mutsu-
roh Iwakoshi 2004. Capturing Guitar Fingering by Photo-Reflector
Technique. Joint Baltic-Nordic Acoustics Meeting Mariehamn,Åland.
Available online at: C:\Documents and Settings\lcostalonga\My
Documents\Macbook\Documents\Bibliography\EndNote Library\
PDF Files\Aoki2004.pdf.

Norman, D. A. 1981. Categorization of Action Slips. Psychologi-
cal Review, 88, (1) 1-15.

NothernDigital. 2009. Research Grade Motion Capture. Available
online at: http://www.ndigital.com/lifesciences/index.php. Acces-
sed: September 2009.

http://www.liutaiomottola.com/formulae/fret.htm
file:\Documents%20and%20Settings\lcostalonga\My%20Documents\Macbook\Documents\Bibliography\EndNote%20Library\PD
file:\Documents%20and%20Settings\lcostalonga\My%20Documents\Macbook\Documents\Bibliography\EndNote%20Library\PD
file:\Documents%20and%20Settings\lcostalonga\My%20Documents\Macbook\Documents\Bibliography\EndNote%20Library\PD
http://www.ndigital.com/lifesciences/index.php

291

Palmer, C. 1989. Mapping Musical Thought to Musical Performance.
Journal of Experimental Psychology: Human Perception and
Performance, 15, (12) 331-346.

Palmer, C. 1992. The Role of Interpretive Preferences in Music
Performance. In: Jones, M.R.H., Susan (Ed). Cognitive Bases of
Musical Communication. American Psychological Association,
Washington, DC, US. pp 249-262.

Palmer, C. 1997. Music Performance. Annual Review of Psycho-
logy, 48, (1) 115-138.

Palmer, C. and Van de Sande, C. 1993. Units of Knowledge in Music
Performance. Journal of Experimental Psychology: Learning
Memory and Cognition, 19, (2) 457-470.

Park, T. H. 2009. An Interview with Max Mathews. Computer
Music Journal, 33, (3) 9-22.

Parlitz, D., Peschel, T. and Altenmuller, E. 1998. Assessment of
Dynamic Finger Forces in Pianists: Effects of Training and Exper-
tise. Journal of Biomechanics, 31, (11) 1063-1067.

Parncutt, R. 1994. A Perceptual Model of Pulse Salience and Metri-
cal Accent in Musical Rhythms. Music Perception, 11, (4) 409-409.

Parncutt, R. 1997. Modeling Piano Performance: Physics and Cog-
nition of a Virtual Pianist. International Computer Music Confe-
rence. . San Francisco, California, US.

Parncutt, R., Sloboda, J. A., Clarke, E. F., Raekallio, M. and Desain,
P. 1997. An Ergonomic Model of Keyboard Fingering for Melodic
Fragments. Music Perception, 14, (4) 341-382.

292

Penn, I. W., Chuang, T. Y., Chan, R. C. and Hsu, T. C. 1999. Emg
Power Spectrum Analysis of First Dorsal Interosseous Muscle in
Pianists. Medicine and Science in Sports and Exercise, 31,
(12) 1834-1838.

Pennycook, B. W. 1985. Computer-Music Interfaces - a Survey. Com-
puting Surveys, 17, (2) 267-289.

Perkell, J. S. and Klatt, D. H. 1986. Invariance and Variabi-
lity in Speech Processes. Lawrence Erlbaum Assoc Inc, Hills-
dale, NJ, England.

Pheasant, S. and Haslegrave, C. M. 2006. Bodyspace: Anthropo-
metry, Ergonomics, and the Design of Work. CRC Press, Boca
Raton, Florida, US.

Pisoni, D. B. 1977. Identification and Discrimination of the Rela-
tive Onset Time of Two Component Tones: Implications for Voi-
cing Perception in Stops. The Journal of the Acoustical Society
of America, 61, (5) 1352-1361.

Poepel, C. 2004a. Synthesized Strings for String Players. New
interfaces for musical expression. Hamamatsu, Shizuoka, Japan
National University of Singapore pp 150-153.

Poepel, C. 2004b. Synthesized Strings for String Players. Procee-
dings of the 2004 conference on New interfaces for musical
expression, 150--153.

Poepel, C. 2005. On Interface Expressivity: A Player-Based Study.
Proceedings of the 2005 conference on New interfaces for
musical expression, 228--231.

293

Polansky, L. and Rosenboom, D. 1985. Hmsl a Real-Time Envi-
ronment for Formal, Perceptual and Compositional Experi-
mentation. International Computer Music Conference. Den Haag,
Netherlands. Royal Conservatory of Music. pp 243-250.

Polansky, L., Rosenboom, D. and Burk, P. 1987. Hmsl: Overview
(Version 3.1) and Notes on Intelligent Instrument Design. ICMC.

Povel, D. J. and Essens, P. 1985. Perception of Temporal Patterns.
Music Perception, 2, (4) 411-440.

Puckette, M. 2002. Max at Seventeen. Computer Music Jour-
nal, 26, (4) 31-43.

Radicioni, D., Anselma, L. and Lombardo, V. 2004. A Segmentation-
-Based Prototype to Compute String Instruments Fingering. Procee-
dings of the Conference on Interdisciplinary Musicology, Graz,

Radicioni, D. and Lombardo, V. 2005. Guitar Fingering for Music
Performance. International Computer Music Conference. Spain.
2005. pp 527-530.

Radicioni, D. P. and Lombardo, V. Computational Modeling of
Chord Fingering for String Instruments. strings, 40, 45--50.

Radisavljevic, A. and Driessen, P. 2004a. Path Difference Learning
for Guitar Fingering Problem. Proceedings of the International
Computer Music Conference,

Radisavljevic, A. and Driessen, P. 2004b. Path Difference Learning
for Guitar Fingering Problem. International Computer Music
Conference. Miami, Florida, US.

294

Rasmussen, J. 1986. Information Processing and Human-Ma-
chine Interaction: An Approach to Cognitive Engineering.
Elsevier Science Inc. New York, NY, USA.

Reason, J. 1987. Generic Error-Modelling System (Gems): A Cog-
nitive Framework for Locating Common Human Error Forms. In:
J Rasmussen, K.D., J Lepla (Ed). New Technology and Human
Error. Wiley & Sons Chichester, New Yourk. pp 63--83.

Repp, B. H. 1994. Patterns of Expressive Timing in Performances of
a Beethoven Minuet by 19 Famous Pianists - Response. Journal of
the Acoustical Society of America, 96, (2) 1179-1181.

Repp, B. H. 2006. Rate Limits of Sensorimotor Synchronization.
Advances in Cognitive Psychology, 2, (3) 163-181.

Roads, C. 1985. Research in Music and Artificial-Intelligence. Com-
puting Surveys, 17, (2) 163-190.

Rosenbaum, D. A. 1995. Planning Reaches Bby Evaluating Stored
Postures. Psychological Review, 102, (1) 28-67.

Rosenbaum, D. A. 1996. From Cognition to Biomechanics and Back:
The End-State Comfort Effect and the Middle-Is-Faster Effect. Acta
Psychologica, 94, (1) 59-85.

Salvendy, G. 1987. Handbook of Human Factors. Wiley.

Sanders, M. S. and McCormick, E. J. 1993. Human Factors in Engi-
neering and Design. McGraw-Hill Science/Engineering/Math.

Saunders, C., Hardoon, D. R., Shawe-Taylor, J. and Widmer, G.
2004. Using String Kernels to Identify Famous Performers

295

from Their Playing Style. Boulicaut, J.F., Esposito, F., Giannoti,
F. and Pedreschi, D. (Eds). 15th European Conference on Machine
Learning. Pisa, Italy. Sep 20-24. pp 384-395.

Sayegh, S. I. 1989. Fingering for String Instruments with the Opti-
mum Path Paradigm. Computer Music Journal, 13, (3) 76-84.

Schmidt, R. T. and Toews, J. V. 1970. Grip Strength as Measured
by the Jamar Dynamometer. Archives of Physical Medicine and
Rehabilitation, 51, (6) 321.

Seashore, C. E. 1936. Objective Analysis of Musical Performance.
University of Iowa Press, Iowa, US

Seewald, A. K. 2002. How to Make Stacking Better and Faster
While Also Taking Care of an Unknown Weakness. Nine-
teenth International Conference on Machine Learning table Mor-
gan Kaufmann Publishers Inc. San Francisco, CA, USA. pp 554-561.

Shaffer, L. H. 1981. Performances of Chopin, Bach, and Bartok -
Studies in Motor Programming. COGNITIVE PSYCHOLOGY,
13, (3) 326-376.

Shaffer, L. H. and Todd, N. P. 1987. The Interpretive Component
in Musical Performance. Action and Perception in Rhythm and
Music. Stockholm: Royal Swedish Academy of Music. University
Press. pp 258-270.

Shan, G. B. and Visentin, P. 2003. A Quantitative Three-Dimen-
sional Analysis of Arm Kinematics in Violin Performance. Medical
Problems of Performing Artists, 18, (1) 3-10.

296

Shepard, R. N. 2002. Perceptual-Cognitive Universals as Reflections
of the World. Behavioral and Brain Sciences, 24, (04) 581-601.

Shock, N. W. 1962. The Physiology of Aging. In: JH., P. (Ed). Scien-
tific American. pp 100.

Silverman, B. W. and Jones, M. C. 1989. E. Fix and Jl Hodges (1951):
An Important Contribution to Nonparametric Discriminant Analy-
sis and Density Estimation: Commentary on Fix and Hodges (1951).
International Statistical Review, 57, (3) 233-238.

Singleton , W. T. 1972. Introduction to Ergonomics. WHO, Geneva.

Sloboda, J. 1982. Music Performance. In: P Fraisse, D.D. (Ed). The
Psychology of Music. Academic Press New York, NY. pp 479–496.

Sloboda, J. A. 2000. Individual Differences in Music Performance.
Trends in Cognitive Sciences, 4, (10) 397-403.

Statsoft. 2009. Bagging. Available online at: http://www.statsoft.
com/textbook/stdatmin.html#bagging. Accessed: Setpember 2009.

Sundberg, J. 1980. On the Anatomy of the Retard - a Study of
Timing in Music. Journal of the Acoustical Society of Ame-
rica, 68, (3) 772-779.

Sundberg, J. 2000. Four Years of Research on Music and Motion.
Journal of New Music Research, 29, (3) 183-185.

Sundberg, J. 2003. Special Issue: Research in Music Performance.
Journal of New Music Research, 32, (3) 237-237.

http://www.statsoft.com/textbook/stdatmin.html#bagging
http://www.statsoft.com/textbook/stdatmin.html#bagging

297

Sundberg, J., Askenfelt, A. and Frydén, L. 1983a. Musical Perfor-
mance: A Synthesis-by-Rule Approach. Computer Music Jour-
nal, 7, (1) 37-43.

Sundberg, J., Fryden, L. and Askenfelt, A. 1983b. What Tells You
the Player Is Musical?An Analysis-by-Synthesis Study of Music Per-
formance. In: Sundberg, J. (Ed). Studies of Music Performance.
Royal Swedish Academy of Music, Stockholm, Sweden. pp 61–75.

Swain, A. D., Guttmann, H. E. and others 1983. Handbook of Human
Reliability Analysis with Emphasis on Nuclear Power Plant Appli-
cations. NUREG/CR, 1278,

Thompson, W. F., Dalla Bella, S. and Keller, P. E. 2006. Music Per-
formance. Advances in Cognitive Psychology, 2, (2-3) 99--102.

Todd, N. 1985. A Model of Expressive Timing in Tonal Music.
Music Perception, 3, (1) 33-58.

Todd, N. 1989a. A Computational Model of Rubato. Contempo-
rary Music Review, 3, (1) 69-88.

Todd, N. 1989b. Towards a Cognitive Theory of Expression: The
Performance and Perception of Rubato. Contemporary Music
Review, 4, (1) 405-416.

Todd, N. P. M. 1992. The Dynamics of Dynamics - a Model of Musi-
cal Expression. Journal of the Acoustical Society of America,
91, (6) 3540-3550.

Todd, N. P. M. 1995a. The Kinematics of Musical Expression. Jour-
nal of the Acoustical Society of America, 97, (3) 1940-1949.

298

Todd, N. P. M. A. 1995b. The Kinematics of Musical Expression.
The Journal of the Acoustical Society of America, 97, 1940.

Tolonen, T. 1998. Model-Based Analysis and Resynthesis of
Acoustic Guitar Tones. University of Helsinki

Tuohy, D. and Potter, W. D. 2005a. A Genetic Algorithm for the
Automatic Generation of Playable Guitar Tablature. Interna-
tional Computer Music Conference. Barcelona, Spain. pp 499–502.

Tuohy, D. and Potter, W. D. 2005b. A Genetic Algorithm for
the Automatic Generation of Playable Guitar Tablature.
ICMC. pp 499–502.

Tuohy, D. R. and Potter, W. D. A Genetic Algorithm for the Auto-
matic Generation of Playable Guitar Tablature. Proc. Internatio-
nal Computer Music Conference, 499--502.

Tuohy, D. R. P., W. D. 2006. An Evolved Neural Network/Hc
Hybrid for Tablature Creation in Ga-Based Guitar Arranging.
Proceeding of the International Computer Music Conference New
Orleans, Louisiana.

Valimaki, V., Huopaniemi, J., Karjalainen, M. and Janosy, Z. 1996.
Physical Modeling of Plucked String Instruments with Application
to Real-Time Sound Synthesis. Journal of the Audio Enginee-
ring Society, 44, (5) 331-353.

Vercoe, B. 1986. Csound: A Manual for the Audio Processing Sys-
tem and Supporting Programs. Program Documentation. Cambridge,
Massachusetts: MIT Media Lab. Available online at: http://webland.
panservice.it/musica/pavan/cspocman.pdf.

http://webland.panservice.it/musica/pavan/cspocman.pdf
http://webland.panservice.it/musica/pavan/cspocman.pdf

299

von Hornbostel, E. M. and Sachs, C. 1961. Classification of
Musical Instruments: Translated from the Original Ger-
man by Anthony Baines and Klaus P. Wachsmann. Galpin
Society. 3-29 pp.

Wargo, M. J. 1967. Human Operator Response Speed, Frequency,
and Flexibility: A Review and Analysis. Human factors, 9, (3) 221.

Weka. 2009. Use Weka in Your Java Code. Available online at: http://
weka.wikispaces.com/Use+WEKA+in+your+Java+code. Accessed:
September 2009.

Wickens, C. D. and Hollands, J. G. 2000. Engineering Psychology
and Human Performance (3rd). New Jersey: Prentice Hall.

Wickens, C. D., Lee, J., Liu, Y. D. and Gordon-Becker, S. 2003.
Introduction to Human Factors Engineering. Prentice-Hall, Inc.
Upper Saddle River, NJ, USA.

Wickiewicz, T. L., Roy, R. R., Powell, P. L. and Edgerton, V. R. 1983.
Muscle Architecture of the Human Lower Limb. Clinical Ortho-
paedics and Related Research, 179, (1) 275-283.

Widmer, G. 2003. Discovering Simple Rules in Complex Data: A
Meta-Learning Algorithm and Some Surprising Musical Discove-
ries. Artificial Intelligence, 146, (2) 129-148.

Widmer, G. 2004. Computational Models of Expressive Music Per-
formance: The State of the Art. Journal of New Music Research,
33, (3) 203-216.

Widmer, G., Dixon, S., Goebl, W., Pampalk, E. and Tobudic, A. 2003.
In Search of the Horowitz Factor. Ai Magazine, 24, (3) 111-130.

http://weka.wikispaces.com/Use+WEKA+in+your+Java+code
http://weka.wikispaces.com/Use+WEKA+in+your+Java+code

300

Wing, A. M., Haggard, P. and Flanagan, J. R. 1996. Hand and Brain:
The Neurophysiology and Psychology of Hand Movements.
Academic Press San Diego.

Witten, I. H. and Frank, E. 2002. Data Mining: Practical Machine
Learning Tools and Techniques with Java Implementations. ACM
SIGMOD Record, 31, (1) 76--77.

Wohlfart, B. and Edman, K. A. 1994. Rectangular Hyperbola Fitted
to Muscle Force-Velocity Data Using Three-Dimensional Regres-
sion Analysis. Experimental physiology, 79, (2) 235-239.

301

Index

A
acoustical properties
Activities of Daily Living
aesthetics
algorithmic composition
analysis-by-measurement
analysis-by-synthesis
Animazoo Gypsy6 Torso
Antoria Archtop Jazz Guitar
apoyando
Association Learning

B
barre-chord
beats
behavioural-based approach
Behavioural-Based Modelling
Biomechanical Models
biomechanics
Buzzed-notes

302

C
capacity demand
Central Nervous System
chord shape
classical guitar style
classical guitar techniques
Classification (Supervised) Learning
Clustering
cognitive models
cognitive theories
Common Music Notation
computer models
computer music programming
computer scientists
computer-modelling
contralateral activation
Correlation Coefficient
cross-section area

D
data mining
Decision Table
degree of freedom
deviation
dynamics

E
embodied
emotions
Endurance
ENP – Expressive Notation Package
ergonomic model
ergonomics

303

excursion
Expectation Maximisation
Expressive Music Performance
expressiveness

F
Fatigue
fibre length
First-To-Last note time interval
fitness
Fitt’s law
FoGu (Force Gauge Guitar)
force
force sensors
force-velocity relationship
fretboard
Frozen Positions (FPs)

G
GEMS - Generic Error Modelling System
guide-finger
guitar performance
guitar synthesiser

H
Hand movements
hand presentations
Hand repositioning
handgrip configurations
Human Factors

I
IdiomaticGuitar

304

injuries
Instance-based (IBK)
inter-fret space
internal clocks
internal time-keeper clock
interonset intervals
intonation
IRCAN Ethersense Interface
isometric force
isometric strength

J
Jebsen Test of Hand Function
just noticeable difference

K
Kinematic Models
kinematics
KTH model
KTH performance rule system

L
lapses
left-hand
listening experiment
luthier

M
machine learning
mathematical modelling
Max/MSP
Maximum Practical Span
Mean Absolute Error

305

Mean-Square error
MIDI
mistakes
Motor control
Movement
muffled note
multi-tip pinch grip
muscle contraction
muscle fibre
muscle speed
Muscle strength
Music Performance Anxiety
Musical Data Interpreters
musical data structures
musical elements
musical score
musical structure
Musical Structure
musicologists

N
Nearest-neighbour
Neural Network
noise
Numeric Prediction

O
Octopus Music API
onset time
Operator Theory’
OSC (Open Sound Control)

306

P
palmar pinch grip
patterns of deviations
pauses
perception experiments
Perceptual Modelling
Perceptual models
Perceptual studies
performance
Performers
performing artist
physical models
physiological
pinch grip
playability
playing styles
playing techniques
positions
Possible Span
postures
power grip
Pre-scratch
programming language
programming library
psychoacoustic experiments
psychologists

R
Random Committee
Random Forest
Range of Motion
Reaction Time
Relative Absolute Error

307

right hand
rotational movements
rubato
RUBETTEs
rule-based approach

S
scale length
serendipity
SHERPA - Systematic Human Error Reduction and
Prediction Approach
simulation-based approach
Simulation-Based Modelling
Skin viscoelasticity
slips
Stemma Theory
String action
string gauge
symbolic information
synthesizer

T
tablature
THERP - Technique for Human Error Rate Prediction
tip pinch grip
tirandu
tone attacks
tone decays
travel-cost
Trees for numeric prediction

U
unintentional actions

308

V
vibrato
virtuoso

W
Weka
white noise
workload

Y
Yamaha EZ-AG

