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Abstract

Clustering is a recurrent task in data mining. The application of traditional heuristics tech-
niques in large sets of data is not easy. They tend to have at least quadratic complexity with
respect to the number of points, yielding prohibitive run times or low quality solutions. The
most common approach to tackle this problem is to use weaker, more randomized algorithms
with lower complexities to solve the clustering problem. This work proposes a novel approach
for performing this task, allowing traditional, stronger algorithms to work on a sample of the
data, chosen in such a way that the overall clustering is considered good.



Resumo

Agrupamento de dados é uma tarefa recorrente em mineração de dados. Com o passar do
tempo, vem se tornando mais importante o agrupamento de bases cada vez maiores. Contudo,
aplicar heurísticas de agrupamento tradicionais em grandes bases não é uma tarefa fácil. Essas
técnicas geralmente possuem complexidades pelo menos quadráticas no número de pontos da
base, tornando o seu uso inviável pelo alto tempo de resposta ou pela baixa qualidade da solução
final. A solução mais comumente utilizada para resolver o problema de agrupamento em bases
de dados grandes é usar algoritmos especiais, mais fracos no ponto de vista da qualidade. Este
trabalho propõe uma abordagem diferente para resolver esse problema: o uso de algoritmos
tradicionais, mais fortes, em um sub-conjunto dos dados originais. Esse sub-conjunto dos dados
originais é obtido com uso de um algoritmo co-evolutivo que seleciona um sub-conjunto de
pontos difícil de agrupar.



Acknowledgements

This work would not be possible without the support and guidance, direct or indirect, of

some individuals that in a way or another helped in the realization of this work.

First and foremost, Dsc. Flávio Miguel Varejão, whose commitment and willingness to

boost the research quality of the University made this work possible.

Dsc. Alexandre Loureiro Rodrigues, whose statistical knowledge and helpful insights

greatly improved the quality of this work.

Undergraduate student Estevão Costa for the help in executing the experiments.

ESCELSA company, in special, Rodrigo Marin Ferro for the availability and disclosing

data used in tests in this work.

Last but not least, to my family, including Caroline Rizzi, whose patient and meticulous

reviews of the texts greatly helped the conclusion of this work.



Contents

1 Introduction p. 13

1.1 Algorithms for hard clustering . . . . . . . . . . . . . . . . . . . . . . . . . p. 14

1.2 Scope of this work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . p. 15

1.3 Organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . p. 16

2 Related Work p. 17

2.1 Fast Data Indexing and Summarization . . . . . . . . . . . . . . . . . . . . . p. 19

2.2 Classical algorithms for solving the k-means problem in large data sets . . . . p. 20

2.3 Co-evolutionary algorithms and cluster ensembles . . . . . . . . . . . . . . . p. 23

3 Traditional Clustering Algorithms p. 25

3.1 Traditional Methods for Clustering Large Data sets . . . . . . . . . . . . . . p. 26

3.1.1 CURE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . p. 27

3.1.2 CLARANS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . p. 32

3.1.3 BIRCH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . p. 36

3.1.4 DBSCAN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . p. 39

3.1.5 R-Tree . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . p. 42

4 Co-evolutionary Clustering p. 46

4.1 Co-evolutionary Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . p. 48



4.1.1 Using Co-evolution for clustering large data sets . . . . . . . . . . . p. 51

4.2 The COCLU Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . p. 55

4.2.1 Encoding of the Individuals . . . . . . . . . . . . . . . . . . . . . . p. 56

4.2.2 Initialization of the Populations . . . . . . . . . . . . . . . . . . . . p. 57

4.2.3 Fitness Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . p. 58

4.2.4 Generation of Population . . . . . . . . . . . . . . . . . . . . . . . . p. 60

4.3 Classical clustering algorithms used for population B . . . . . . . . . . . . . p. 63

4.3.1 K-Means Clustering Algorithm . . . . . . . . . . . . . . . . . . . . p. 63

4.3.2 Spectral Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . p. 64

4.3.3 CURE and CLARANS Algorithm . . . . . . . . . . . . . . . . . . . p. 64

5 Clustering Results p. 65

5.1 Benchmark data sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . p. 65

5.2 Setup of algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . p. 66

5.2.1 CLARANS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . p. 67

5.2.2 BIRCH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . p. 67

5.2.3 CURE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . p. 67

5.2.4 DBSCAN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . p. 68

5.2.5 COCLU . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . p. 68

5.2.6 Testing Environment . . . . . . . . . . . . . . . . . . . . . . . . . . p. 69

5.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . p. 69

5.3.1 Results for X2D2K Base . . . . . . . . . . . . . . . . . . . . . . . . p. 69

5.3.2 Results for X8D5K Base . . . . . . . . . . . . . . . . . . . . . . . . p. 70

5.3.3 Results for BRD14051 Base . . . . . . . . . . . . . . . . . . . . . . p. 72

5.3.4 Results for Pen Digits Base . . . . . . . . . . . . . . . . . . . . . . p. 74

5.3.5 Results for PLA33810 Base . . . . . . . . . . . . . . . . . . . . . . p. 76

5.3.6 Results for Shuttle Base . . . . . . . . . . . . . . . . . . . . . . . . p. 77



5.3.7 Results for PLA85900 Base . . . . . . . . . . . . . . . . . . . . . . p. 80

5.3.8 Results for ESCELSA Base . . . . . . . . . . . . . . . . . . . . . . p. 82

5.3.9 Results for MiniBooNE Base . . . . . . . . . . . . . . . . . . . . . p. 86

6 Conclusion and Future Work p. 89

6.1 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . p. 90

6.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . p. 90

Bibliography p. 92



List of Figures

3.1 Demonstration that the SSE of a clustering response decreases as k increases . p. 27

3.2 Graph abstraction of the CLARANS algorithm . . . . . . . . . . . . . . . . . p. 33

3.3 Medoid Swapping - First Case . . . . . . . . . . . . . . . . . . . . . . . . . p. 35

3.4 Medoid Swapping - Second Case . . . . . . . . . . . . . . . . . . . . . . . . p. 35

3.5 Medoid Swapping - Third Case . . . . . . . . . . . . . . . . . . . . . . . . . p. 36

3.6 Medoid Swapping - Forth Case . . . . . . . . . . . . . . . . . . . . . . . . . p. 36

3.7 Example of a cluster formed by DBSCAN . . . . . . . . . . . . . . . . . . . p. 39

3.8 Naive X R-Tree runtime for the first three data sets . . . . . . . . . . . . . . p. 43

3.9 Naive X R-Tree runtime for the forth to the seventh data sets . . . . . . . . . p. 44

3.10 Naive X R-Tree runtime for the last three data sets . . . . . . . . . . . . . . . p. 44

3.11 Time comparison considering the synthetic data set, varying the size . . . . . p. 45

4.1 Sub-sampling examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . p. 51

4.2 Min-max representation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . p. 54

4.3 Illustration of the swapping procedure . . . . . . . . . . . . . . . . . . . . . p. 54

5.1 The SSE of all tested algorithms . . . . . . . . . . . . . . . . . . . . . . . . p. 73

5.2 Running times of all algorithms on base BRD14051 . . . . . . . . . . . . . . p. 74

5.3 The SSE of all tested algorithms, with the exception of the DBSCAN algo-

rithm on data set PLA33810 . . . . . . . . . . . . . . . . . . . . . . . . . . p. 76

5.4 Running times of all algorithms on data set PLA33810 . . . . . . . . . . . . p. 77



5.5 The SSE of all tested algorithms, with the exception of the DBSCAN algo-

rithm, on data set Shuttle . . . . . . . . . . . . . . . . . . . . . . . . . . . . p. 78

5.6 The SSE of all tested algorithms, with the exception of the DBSCAN and

CURE algorithms (for a better visualization) on data set Shuttle . . . . . . . p. 79

5.7 Running times of all algorithms, with the exception of the DBSCAN algo-

rithm, on data set Shuttle . . . . . . . . . . . . . . . . . . . . . . . . . . . . p. 80

5.8 The SSE of all tested algorithms, with the exception of the DBSCAN algo-

rithm on data set PLA85900 . . . . . . . . . . . . . . . . . . . . . . . . . . p. 81

5.9 Running times of all algorithms on data set PLA85900 . . . . . . . . . . . . p. 82

5.10 The SSE of all tested algorithms, with the exception of the DBSCAN algo-

rithm, on data set ESCELSA . . . . . . . . . . . . . . . . . . . . . . . . . . p. 83

5.11 The SSE of all tested algorithms, with the exception of the DBSCAN and

CURE algorithms (for a better visualization) on data set Shuttle . . . . . . . p. 84

5.12 Running times of all algorithms, with the exception of the DBSCAN algo-

rithm, on data set ESCELSA . . . . . . . . . . . . . . . . . . . . . . . . . . p. 85

5.13 Running times of all algorithms, with the exception of the DBSCAN algo-

rithm and CURE algorithms (for a better visualization), on data set ESCELSA p. 86

5.14 The SSE CLARANS and COCLU, on data set MiniBooNE . . . . . . . . . . p. 87

5.15 Running times of CLARANS and COCLU algorithms, on data set MiniBooNE p. 88



List of Tables

5.1 When the literature does not provide a value for the number of clusters, the

range of values between 2 and 29 is used for testing. Only the trainning sets

of the data sets were used in the algorithm’s evaluation . . . . . . . . . . . . p. 66

5.2 Parameters of the BIRCH algorithm for all data sets . . . . . . . . . . . . . . p. 67

5.3 Parameters of the COCLU algorithm for all data sets . . . . . . . . . . . . . p. 68

5.4 Sum of squared errors (SSE) of all algorithms for base X2D2K, k = 2 . . . . p. 69

5.5 Running times of all algorithms on base X2D2K . . . . . . . . . . . . . . . . p. 70

5.6 Sum of squared errors (SSE) of all algorithms for base X8D5K, k = 8 . . . . p. 71

5.7 Running times of all algorithms on base X8D5K . . . . . . . . . . . . . . . . p. 72

5.8 Sum of squared errors (SSE) of all algorithms for base Pen Digits, k = 10 . . p. 75

5.9 Running times of all algorithms on base Pen Digits . . . . . . . . . . . . . . p. 75



12

List of Algorithms

1 The CURE Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . p. 29

2 The CURE Algorithm, Merging Procedure . . . . . . . . . . . . . . . . . . . p. 31

3 The Adapted CURE Algorithm for larger data sets . . . . . . . . . . . . . . . p. 32

4 The CLARANS Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . p. 34

5 The CF Tree Building Algorithm . . . . . . . . . . . . . . . . . . . . . . . . p. 38

6 The DBSCAN Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . p. 40

7 The Expansion Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . p. 40

8 Local search for finding the value for ε that generates k clusters . . . . . . . . p. 41

9 The generic co-evolutionary algorithm for solving a min-max problem . . . . p. 56

10 Population Initialization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . p. 58

11 Evaluation of the fitness of an individual of population A . . . . . . . . . . . p. 59

12 Evaluation of the fitness of an individual in population B . . . . . . . . . . . p. 59

13 Generation of new individuals of population A . . . . . . . . . . . . . . . . . p. 60

14 Generation of new individuals of population B . . . . . . . . . . . . . . . . . p. 60

15 Mutation of an individual x of population A . . . . . . . . . . . . . . . . . . p. 61

16 Crossover individuals of population A . . . . . . . . . . . . . . . . . . . . . p. 62

17 The k-means algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . p. 63



13

Chapter 1
Introduction

Data Clustering is the task of assigning data points to groups (called clusters) so that sim-

ilar objects belong to the same group given a similarity metric. This task is an unsupervised

technique, because it does not depend on the actual labels of the data points to build the under-

lying organization. Grouping similar objects is a recurrent problem when dealing with analy-

sis of large sets of data. In fact, grouping continuous data points plays a fundamental role in

Knowledge-Discovery in Databases (KDD). The clustering task is essential in many relevant ar-

eas of human knowledge, e.g.: data visualization (SHERLOCK, 2000), bio-informatics (SHER-

LOCK, 2000; BENSMAIL et al., 2005), load balancing (MARZOUK; GHONIEM, 2005) and

image processing (LIEW; YAN, 2003).

The general clustering task may be either hard (KAUFMAN; ROUSSEEUW, 2005), over-

lapping (BANERJEE et al., 2005) or soft (GUSTAFSON; KESSEL, 1978). Soft clustering (or

fuzzy clustering) allows for points to belong to many different clusters at the same time with

a certain degree of pertinence. Overlapping clustering allows for a point to belong to two or

more clusters at the same time. In hard clustering, all points belong to one and only one cluster

at a given time. This work deals only with the hard clustering version of the general clustering

task. This variation is the most common incarnation of the clustering problem in real-world

applications.

Algorithms that deal with hard clustering may be divided in two big groups: partitioning

and hierarchical (KAUFMAN; ROUSSEEUW, 2005). Partitioning clustering algorithms iter-

atively construct solutions by creating disjoint and complete regions on the search space and

assign each point to a region. Hierarchical clustering algorithms iteratively join (or separate)

the two most similar clusters of a given iteration into a single cluster (or two). Hierarchical

algorithms tend be very sensitive on the data set size and are only viable for relatively small
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clustering tasks. This type of clustering algorithm has the property that each cluster is always

formed by two or more clusters, building a taxonomy of data points. This notion of hierar-

chy may be useful in some applications that wish to have different levels of data separation.

For instance, an application could use this clustering technique for grouping similar documents

together. The first two big groupings could be documents written in different languages, the

divisions inside the group’s language could be major subjects written in that language, and so

on. Because of the scalability problems associated with traditional hierarchical algorithms, they

will not be considered in the work, however, an adaptation of a hierarchical algorithm for large

data sets will be examined.

1.1 Algorithms for hard clustering

This work will focus on tackling the hard clustering problem in metric spaces using the Sum

of Squared Errors as the minimizing function.

There are many algorithms proposed in the literature to tackle the hard clustering prob-

lem. They are divided in exact, approximate and meta-heuristic algorithms. Exact algorithms

usually implement some smart search strategy (e.g. branch and bound techniques (FRANTI;

VIRMAJOKI; KAUKORANTA, 2002)). Approximate algorithms (OSTROVSKY; RABANI,

2000) usually guarantee an (1− ε) approximation where ε is coupled to the complexity of the

underlying algorithm. Meta-heuristics do not hold any quality guarantee and usually aim at

solving the problem in viable times.

An exact clustering algorithm finds the optimal solution for a clustering problem. This

solution is the partitioning that minimizes the Sum of Squared Errors (SSE) for a given number

of clusters k and a set of points D. However, the hard clustering problem in metric spaces is

NP-Hard, i.e., there is no known algorithm capable of finding an optimal solution in polynomial

time on the base size and probably there will never be (ALOISE et al., 2009). This kind of

solution is only applicable for very small data sets.

Similarly, approximate clustering algorithms guarantee that the cost of an approximate so-

lution multiplied by an Approximation Factor ε is smaller than the optimum solution. The value

of ε regulates both the quality of the solution and the running time of the algorithm. Large val-

ues for ε yield poor solutions but fast running times, while values closer to 1 result in optimal

solutions and very large running times. Thus, these algorithms yield complexities that won’t

compute good solutions for relatively small data sets in practical times (OSTROVSKY; RA-

BANI, 2000). Approximate Clustering algorithms have exponential complexity on ε , the closer
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ε is to 1, the more costly the underlying approximation is.

Given these facts, the most common way to solve the generic clustering problem on medium-

sized data sets is by using heuristic algorithms. This kind of algorithm guarantees neither

optimal nor approximate solutions, but usually has polynomial complexity. There are many

different heuristics, each one with its specific application niche.

1.2 Scope of this work

This work focuses on the application of clustering algorithms in large data sets (more than

10.000) and low dimension (less than 6). In these conditions, even heuristic algorithms with

polynomial complexity, like the k-means algorithm, may struggle to finish execution in practical

times and/or reasonable memory loads. This work will also perform experiments on smaller

data sets to test how the algorithms will scale as the problems get more difficult to solve.

Given this fact, there are algorithms specially conceived to work in large data sets. They

usually avoid scanning the database many times and rely on sophisticated data structures to

query the data. Also, there are algorithms specialized in building a summary of the data, a set

of points that represents well the whole data set.

This work examines a set of classical algorithms designed for large data sets. In addition,

experiments are performed to compare them to a novel, co-evolutionary algorithm for solving

the clustering problem in large data sets in a robust manner.

Currently, the use of co-evolutionary algorithms for solving optimization problems is ubiq-

uitous (MICHALEWICZ, 1994; MICHALEWICZ; JANIKOW, 1996; BERGH; ENGELBRECHT,

2004; AUGUSTO; BARBOSA; EBECKEN, 2008; BARBOSA, 1996, 1999). The co-evolutionary

approach is based on the natural behaviour of species in nature and employs the use of two or

more populations competing or collaborating towards a common goal. In this work, a dynamic

population (A) of natural numbers that selects which points to consider in a given dataset and a

population (B), of traditional clustering algorithms, that shall evaluate the quality of the points

selected by population A. The population A should be capable of evolving to a set of relevant

points and the population B should provide fast and distinct solution for them. The more het-

erogeneous the algorithm in population B is, the more unlikely it is for the algorithm to “get

stuck” in a local minima. It is expected that the overall result will be a fast and robust clustering

algorithm for large data sets.

The comparison of time and clustering error of the methods will be carried in 8 classical
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data sets present in the literature and one unique real-world dataset. A statistical analysis test

will be performed to check if there are significant differences between the evaluated algorithms.

1.3 Organization

The remainder of this dissertation is organized as follows: Chapter 2 consists on a revision

of related work regarding clustering of large data sets, Chapter 3 contains the formal definition

of the clustering problem and a description of the traditional clustering methods for large data

sets, Chapter 4 describes the novel approach, Chapter 5 exposes the set up of the experiments,

special considerations and results and finally, in Chapter 6 the conclusions are drawn.
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Chapter 2
Related Work

Clustering is basically the grouping of non-labeled data in a way that minimizes a given

quality measure or, in other words, the unsupervised automated learning of data distribution in

different clusters (JAIN; MURTY; FLYNN, 1999). Unsupervised learning is the extraction of

useful information from non-labeled data. It is the opposite of supervised learning, that builds

a discriminative model based on pre-classified data. The model is then used for classifying

unlabeled instances into the previously defined groups.

The objective of creating these clusters of unlabeled instances is to extract useful informa-

tion from the data. This information is often hidden when the data points are scattered with

no clear separation. By analysing the formed groups, one can gain insight over an otherwise

apparently random point distribution. For instance:

• In marketing, for grouping similar clients and analysing their consumption profile (PUNJ;

STEWART, 1983).

• In many image processing applications, like color image quantization (finding the most

important colors of an image for building a good pallet) of images for lossy compression

(XIANG; JOY, 1994).

• For image segmentation, the automatic division of images into similar groups (XIA et al.,

2007).

The problem of finding clusters in large data sets with sparse points is widespread in the

literature, for example:

• Text/web mining, for clustering similar web sites in categories (BEIL; ESTER; XU, 2002).
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• DNA clustering of large DNA sequences, for finding similar chains of DNA to organize

genetic information (RUSSELL et al., 2010; EDGAR, 2010).

• Astronomical data processing, for finding clusters of celestial bodies (TANG et al., 2008).

The previous examples often require clustering of hundreds of thousands of data points.

Each application niche develops its own algorithms for dealing with their particular prob-

lem. For instance, DNA data is mostly discret and multidimensional, thus, it is natural that

specific algorithms must be developed for dealing with this kind of data. Astronomical cluster-

ing algorithms often have to deal with points with an enormous number of numeric attributes,

thus, once again, special care must follow while designing algorithms for dealing with this data.

The goal of this work is to develop a generic algorithm for large spatial datasets, not bound to

specificities of any particular field of interest. Thus, this work will not go into much detail on

algorithms that are too specific to a given area.

This work deals only with data points in regular metric spaces, not considering non-metric

spaces (vectors with one or more nominal attributes changing from one category to another,

without any clear enumeration, like colors, names or shapes). Although not being the major field

of application, vast literature is available for clustering data in non-metric spaces. For instance,

the SCLUST (Symbolic Clustering) algorithm deals with clustering of exclusive symbolic data

on large datasets (LECHEVALLIER; VERDE; CARVALHO, 2006). There are also algorithms

for dealing with large datasets with mixed attributes. For instance, (HE; XU; DENG, 2005)

proposes a scalable algorithm for clustering large datasets containing symbolic and numeric

attributes.

Also, this work will focus on algorithms for large data sets. This kind of algorithm must

be efficient, i.e., avoid the need of scanning the whole data set multiple times. Complexities

greater than quadratic time on the size of the input must be avoided at all costs. Exponential

complexities are almost always prohibitive. Also, it is desirable that the algorithms possess

some kind of mechanism for adapting themselves to the available hardware resources and time

constraints. Classical tree-building algorithms for spatial data are often used to assist the sum-

marization (adapting the available resources to the problem) and fast region query strategies (for

reducing the complexity of common spatial operations when the data sets are large, assisting

the clustering process by increasing the number of points that may be processed in practical

times).

The next Section focuses on reviewing works that deal with the indexing and summarization

of points in large data sets.
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2.1 Fast Data Indexing and Summarization

There are three types of special data structures in the basis of many clustering algorithms.

These structures are designed for allowing the manipulation of large data sets by extracting

important information in an efficient way. The first important type of data structure is the k-

neighborhood spatial index algorithms. These algorithms perform fast k-Nearest Neighborhood

Queries, or k-NN queries, that are responsible for a fast retrieval of the k neighbors of a given

point.

Algorithms for k-NN queries are classified in 5 major categories: simple k-NN queries (BERCH-

TOLD et al., 1998; CHEUNG; FU, 1998), approximate k-NN queries (ARYA et al., 1998;

CIACCIA; PATELLA, 2000), reverse NN queries (KORN; MUTHUKRISHNAN, 2000), con-

strained k-NN queries (FERHATOSMANOGLU et al., 2001) and join k-NN queries (HJALTA-

SON; SAMET, 1998). Simple k-NN queries deal with actually finding the k nearest neighbors

of a given point. Approximate k-NN queries find the best neighbors with some associated prob-

ability. Reverse k-NN queries find the set of points that have the given point as their k-nearest

neighbor. Constrained k-NN queries return the closest k neighbors of a given point inside a

polygonal area. Finally, k-NN join algorithms return the k closest points of a set of query

points.

This work focuses on simple k-NN queries. The most commonly used data structure for this

task is the KD-tree. A KD-tree works by first building a tree containing all points of the data

set in a way that searching of the k-nearest neighbors may be performed quickly by pruning

paths that will not lead to a set of closest points (LIU; LIM; NG, 2002). This data structure was

greatly studied by (MOORE, 1991) and was designed for retrieving the k closest neighbors of a

given point in log(n) time.

The second important data structure is the CF-tree (ZHANG; RAMAKRISHNAN; LIVNY,

1996). The CF-tree builds a summarized representation of the data set, scanning the data only

once. This is important if the amount of data to process is beyond the capabilities of the hard-

ware being used. In just one pass through the dataset, the CF-tree is capable of building a

summarized, yet representative, version of the data. If more passes are performed, it is capable

of improving even more the quality of the summarization. This procedure may be seen as a

pre-clustering of the data, creating clusters in a way that a version of the whole dataset may fit

in the memory at the same time allowing the use of traditional algorithm designed for smaller

data sets.

The third important data structure developed for dealing with large data sets is the R-tree
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(GUTTMAN, 1984). This data structure aims to retrieve efficiently all the points in a rectan-

gular region of the metric space. This kind of spatial query is called window indexing. These

tree algorithms are very useful for dealing with large datasets where scanning all points for

answering a query is prohibitive.

Another valuable approach to reduce the complexity of the data is to employ feature selec-

tion, reducing the dimensionality of the data. There are cases where some attributes have strong

correlation with others, implying that removing one of them from the dataset affects very little

the final clustering decision. There are many methods for reducing dimensionality in the litera-

ture: Sequential Forward Selection, Sequential Backwards Selection (PUDIL; NOVOVICOVA;

KITTLER, 1994), Principal Component Analysis (WOLD; ESBENSEN; GELADI, 1987) and

A-Priori algorithms (AGRAWAL; SRIKANT, 1994) are among the most used. This approach,

however, will not be considered in this work; this work considers that all features are equally

relevant.

The invention of these data structures allowed the development of many clustering algo-

rithms for large data sets. The next Section exposes the most relevant algorithms present in the

literature.

2.2 Classical algorithms for solving the k-means problem in
large data sets

The NP-Hard k-means problem consists in grouping points of a data set in k clusters. The

grouping must minimize the overall SSE error between points of clusters and their respective

centroids. Exact algorithms for solving this problem are exponential with complexity of O(nkd)

(d being the dimension of the data set, n the number of points and k the number of clusters),

and thus impractical even for small data sets. In a tentative for reducing this large complexity, a

number of polynomial time approximation schemes have been developed (VEGA et al., 2003).

Many conclusions may be extracted from this work, however, when the approximation factor is

close to 1, the degree of polynomial complexity is too large in k, yielding unpractical algorithms

even for small dimensions and data sets sizes.

The most famous algorithm for dealing with the k-means problem is called the Loyd Al-

gorithm (MACQUEEN, 1967) (or simply the k-means algorithm, due to its ubiquity). The

k-means algorithm is widely used in the literature with very good results, its use is so spread

that a survey of data mining techniques stated: “is by far the most popular clustering algorithm

used in scientific and industrial applications” (BERKHIN, 2006).
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The k-means algorithm, however, has particularities that restrict its use for large data sets.

The first problem is the running time of the algorithm. Although fast in small data sets, the

algorithm does not scale well when the number of points increase. With large data sets the

use of this algorithm is unfeasible due to its n3 complexity in most cases and super-polynomial

in the worst case (ALSABTI; RANKA; SINGH, 1997; ARTHUR; VASSILVITSKII, 2006).

Also, the algorithm is not designed for saving memory. In its traditional form, all points must

remain in memory at the same time and multiples scans in the data are necessary. The k-means

algorithm is sensitive to the initial, randomized, selection of centroids.

The dependence of the final result on the starting seeds is a well-known problem of the k-

means algorithm. This issue is even more problematic when dealing with large data sets, since a

bad initial set of clusters greatly slows down the convergence time of the algorithm (ARTHUR;

VASSILVITSKII, 2006). Some variations of the original k-means algorithm were devised for

dealing with the initialization problem, in particular the k-means++ algorithm (ARTHUR; VAS-

SILVITSKII, 2007) initializes the centroids by sampling them inversely proportional to the

distance between points and the closest centroid chosen so far (the first centroid is chosen at

random). This improves convergence times of the algorithm, however the very initialization

procedure is quite costly and impractical for large databases. There are many other initializa-

tion procedures that aim to select good points for k-means (NA; LOZANO; NAGA, 1999). All

of them solve the problem of initial sensitivity, but introduce a scalability problem, since initial-

ization procedures tend to be costly. Even with all these restrictions, it is still possible to apply

variations of the k-means algorithm to large datasets with the use of the previously introduced

data structures, although the final results are not always satisfactory.

The first attempts to elucidate the problem of clustering large data sets was solving the k-

medoids problem. The k-medoids problem sets the centroids of the clusters to actual points

of the data set, not arbitrary ones, like the k-means algorithm. This restriction simplifies the

algorithms by restricting the possible distance queries to a restricted set of points.

One of the first k-medoids clustering algorithms proposed for large data sets was the CLARANS

(Clustering Large Applications Based on Randomized Search) algorithm (NG; HAN, 2002).

This algorithm was inspired by the PAM (Partitioning Around Medoids) and CLARA (Cluster-

ing Large Applications) algorithms (NG; HAN, 2002). It performs a very simple random search

in a graph, randomly selecting neighbors of a given solution and checking if the new solution is

better than the old one, with the possibility of accepting few worst solutions before falling back

to the previous best solution found. This simple idea turned out to be both fast and effective,

and it is one of the major algorithms for solving the problem of clustering large dataset until
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today, being widely used as a validation algorithm in benchmarks of the literature (LUO et al.,

2008).

CLARANS works well in large datasets because it builds the solution iteratively, i.e., a

solution is available early, and continually improved. Also, the computation of the error has

an effective optimization that avoids scanning the whole dataset in most cases. However, the

CLARANS algorithm suffers from a known curse of many heuristic algorithms, tending to fall

easily into a local minima and may return not-so-good results.

Shortly after the publication of the seminal paper describing CLARANS, (SANDER et al.,

1998) proposed the DBSCAN algorithm for clustering large spatial datasets. The DBSCAN

algorithm uses the R-tree structure to implement region queries in a fast manner. However,

it requires that all points are stored in memory at the same time, which may be prohibitive in

some cases. The idea of DBSCAN is that isolated, high density regions, must belong to the same

cluster. This implies that it is not possible to choose the number of clusters directly. This may

be useful in applications where the number of clusters is unknown but it is not advantageous if

the number k of cluster is known a priori.

(ANKERST et al., 1999) proposed a generalization for the CLARANS algorithm called OP-

TICS (Ordering Points To Identify the Clustering Structure). It allows an automatic adaptation

of the densities in different regions of the data set, i.e., the density threshold for grouping dif-

ferent regions of the data set may be different. This generalization resulted in a slightly more

costly algorithm but much more robust. The OPTICS-OF algorithm is an extension of the orig-

inal algorithm design for finding outliers (distant points with no clear cluster pertinence that

greatly increase the overall error). (ACHTERT; BOHM; KROGER, 2006) proposed the Deli-

Clu algorithm, an improvement over the original OPTICS algorithm for reducing the number

of parameters from two to only one. The problem of not being possible to set the number of

clusters, however, still remains.

Another approach for dealing with large data sets is adapting classical algorithms for large

data sets. (KANUNGO et al., 2002) proposed a combination of a local search algorithm with the

k-means algorithms for solving the clustering problem in large data sets. Also (LIU; LIM; NG,

2002; YAO; LI; KUMAR, 2010) proposed adaptations for the k-means algorithm for dealing

with large data sets. These approaches reduce the complexity of the problem by selecting the

most relevant attributes for the clustering procedure.

More recently, (LUO et al., 2008) devised a way to use the classical k-means algorithm for

clustering large datasets. The idea is to first reduce the dimensionality of the dataset by selecting

the most relevant features by using an a priori-based algorithm that finds sets of correlated
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variables. After that, the k-means algorithm runs in a sampled subset of the data to find a good

set of centroids. Finally these centroids are used to cluster the whole dataset. The idea is that a

good selection of centroids drawn from the sample reduces the number of iterations needed for

the convergence of k-means.

2.3 Co-evolutionary algorithms and cluster ensembles

This work will use a co-evolutive algorithm for solving the clustering problem. This kind

of algorithm is inspired in the field of game theory, where two agents compete until they find

the Nash Equilibrium of the game. (FICICI, 2004) discusses the roots of co-evolutionary algo-

rithms, their application and variations.

The use of co-evolutive algorithms is common when one needs to optimize two distinct sets

of parameters with a coupled fitness function. The sets of parameters may be competing, i.e.,

while one set tries to minimize the objective function, the other tries to maximize it (competitive

co-evolution); or cooperating, i.e., both populations try to optimize the same objective function.

Much work has been published with this approach, in particular in function optimization with

restrictions. The most common approach is to encode the parameters of the function as individ-

uals of one population, that tries to optimize the objective function, and the other population as

the multipliers of the restrictions. The objective function is encoded as the Lagrangian of the

objective function and its restrictions. Many works use this approach to solve complex design

problems with restrictions (POON; MAHER, 1997; MAHER; POON; BOULANGER, 1996).

(BARBOSA, 1996) uses this idea coupled with Genetic Algorithms for solving many re-

stricted optimization benchmark functions with great success. Also, (AUGUSTO; BARBOSA;

EBECKEN, 2008) developed a competitive co-evolution algorithm that iteratively selects the

most difficult instances to classify and the most efficient algorithms, each taken from specific

populations.

Since co-evolution is designed for solving the generic optimization problem with dual ob-

jective functions, this work applies an idea based on the work of (AUGUSTO; BARBOSA;

EBECKEN, 2008), creating a population for choosing “hard” points for the clustering process

and another population of classical algorithms for solving the clustering process. The goal is to

find the set of points that are most relevant for the final clustering process and the best possible

solution for this set of points.

There are some works in the literature that couple co-evolution and clustering, for instance,

(CHAKRABARTI; KUMAR; TOMKINS, 2006) uses a co-evolutionary clustering algorithm
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for minimizing both the clustering error and the result quality of the algorithm. In (HE; WANG,

2007) the author uses co-evolution for selecting a good set of attributes for the clustering al-

gorithm using co-evolution. In (DHILLON, 2001) the author uses cooperative clustering for

grouping documents and the words that form them in a cooperative and simultaneous manner.

These approaches differ greatly from the one that will be exposed in this work.

The next Chapter defines the clustering problem in detail and gives the description of four

classical algorithms for dealing with large data sets.
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Chapter 3
Traditional Clustering Algorithms

For verifying the performance of the proposed clustering algorithm, four classical ap-

proaches for dealing with large data sets were tested. This Chapter defines the underlying

clustering problem and the classical algorithms used for solving it.

From this point forward, clustering is defined as follows:

Definition 1. Clustering is the restricted discret optimization problem of dividing n spatial

points x̄i ∈ℜd, i ∈ [1..n] of a set X , in k complete and disjoint sets (clusters) Ci, i ∈ [1..k]. This

division must minimize the Sum of the Squared Errors (SSE) of all points with respect to the

cluster centroid. The centroid of a cluster i, c̄i is the mean of all points of cluster i.

More formally, if X = {x̄1, x̄2, x̄3, . . . , x̄n} is a set of points, X ⊂ ℜd , then the clustering

result must adhere to the following restrictions:

i<=k⋃
i=1

Ci ≡ X (3.1)

i<=k⋂
i=1

Ci ≡ /0 (3.2)

And minimize the following expression:

SSE(c) =
i<=k

∑
i=1

j<=Si

∑
j=1

(||Ci, j− c̄i||2) (3.3)

Where Ci, j is the j-th point of the i-th cluster and Si is the size of cluster j. In addition, ||t̄||2
represents the euclidean norm of the vector t̄ ∈ℜd .

This work uses the evaluation metric defined in Equation 3.3 to assess the quality of the
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considered candidate solution. There are many different metrics for measuring cluster quality.

The majority of them depends on a subjective human feeling of whether one clustering result

is more “pleasant” to the eye than another. The paper (AMIGÓ et al., 2009) presents some

approaches for building a clustering evaluation metric that is independent of the number of

clusters and makes sense for the human eye. The problem with these metrics is that some

different clustering techniques are better than others in minimizing certain evaluation criteria.

Also, when dimensionality increases, it becomes hard to verify the quality of those techniques.

So, to avoid bias towards a certain clustering algorithm, this work uses only the SSE evaluation

metric. This simple metric is widely spread in the literature and universally accepted as a valid

approach for evaluating clustering algorithms.

The number of clusters to be created (k) is also a very sensitive experimental parameter,

especially if one is using the SSE clustering evaluation metric. The more clusters the algorithms

build, the smaller can be the SSE of the final clustering result. This fact is easily understood

by analyzing the Figure 3.1. If one splits any cluster in two, the overall clustering SSE will

decrease. Imagine the extreme case that each point defines one cluster (n = k), in this scenario

the centroids of all clusters will be themselves, and the overall SSE, zero. Thus, the bigger k is,

the smaller is the clustering SSE. Given this fact, it makes no sense to compare algorithm runs

with different values for k during experimental evaluation. For a given data set, this work will

use a fixed value for k, if it is provided by the literature. If it is not, a range of arbitrary values

will be tested and the comparison carried out independently for each k.

Although the SSE can potentially decrease when k increases, this is not always the case

when using meta-heuristics. Sometimes the algorithm cannot find a better solution when k

increases, even though it certainly exists. When k increases, the clustering problem becomes

more difficult. For this reason, sometimes the SSE increases with k because the algorithm cannot

deal well with the augmented complexity of the problem for a given computational budget.

In the next Section, classical algorithms for solving the traditional clustering problem for

large data sets are presented.

3.1 Traditional Methods for Clustering Large Data sets

This work focuses on the problem of clustering large data sets. Here “large” means sets

X that are not small enough to fit in main memory at the same time, requiring some kind

of summarization technique or other mechanisms for fast calculation of the necessary values

during algorithm execution.
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(a) Before split (b) After split

Figure 3.1: Example to demonstrate that the SSE of a clustering response decreases as k in-
creases. It is always possible to decrease the SSE of cluster by introducing a new centroid.
Thus, the bigger the k, the smaller the SSE may be.

Many methods for clustering large data sets were proposed throughout the years. To test

the Coevolutive Clustering Algorithm for Large Data Sets (COCLU) proposed in this work,

classical and novel techniques are applied in 8 classical benchmark data sets and 1 unique

data set. Those data sets vary in size from average to large, the behavior of the algorithms in

function of the data set sizes are analyzed in respect to both response-time and result-quality. It

is expected that the proposed algorithm achieves best results in large data sets.

Next, a brief explanation of the applied clustering algorithms and the underlying data struc-

tures used for implementing them are presented. The following Sections present the pseudo-

code, highlight the most import features and point out the limitations and caveats.

3.1.1 CURE

The CURE (GUHA; RASTOGI; SHIM, 1998) algorithm was developed especially for deal-

ing with large data sets with noise. The authors claim that the algorithm is capable of properly

clustering data even if the cluster format is non-trivial, i.e., has non-spherical shapes and/or a

spread point distribution. This algorithm has a strong mechanism for dealing with outliers and

is easily modifiable for dealing with large data sets.

The CURE algorithm is a hierarchical agglomerative clustering algorithm that achieves

both scalability and robustness by selecting a fixed number of representative points to perform

its calculations. Hierarchical agglomerative clustering algorithms begin by considering each

data point as a separate cluster and then merge the closest pair into a single cluster, repeating

this procedure until the desired number of clusters is reached. So, if one needs k clusters in a

data set of size n, these algorithms merge clusters (n− k) times. It is clear that if n is big and

k is small, many merging operations need to be performed. Thus, merging operations must be
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fast for this algorithm to be useful for clustering large data sets.

Hierarchical agglomerative clustering algorithms require the calculation of distances be-

tween clusters many times during the clustering process. There are three common ways for

calculating this distance: minimum pairwise distance between points, maximum pairwise dis-

tance between points and average pairwise distance between points.

The CURE algorithm uses the first option: minimum euclidean distance between pair of

points of clusters T and K , denoted by ||T,K||min
2 and defined in the following Equation:

||T,K||min
2 = min(||Ti−K j||2),∀i ∈ [1 . . . |T |], j ∈ [1 . . . |K|] (3.4)

Where |S| denotes the cardinality of set S.

The calculation of this distance is computationally expensive when the number of points

of each cluster is large, leading to prohibitive processing times in large data sets. The cost of

calculating 3.4, O(|T ||K|) may be reduced to O(r2) by using a subset of r representative points

for each cluster.

The CURE algorithm proposes an approximate way for calculating the distance defined in

Equation 3.4, decreasing the complexity of the overall algorithm. The idea is to use a sample

of representative points of the cluster for calculating their distance. CURE only evaluates a

fixed-sized set of representative points for the merging decision. This reduces the complexity

of the overall algorithm from O(n3) to O(r2log(n)) (GUHA; RASTOGI; SHIM, 1998), where

r is the amount of representative points.

For the algorithm to work properly, the representative points must capture the overall shape

of the clusters and must be descriptive enough for a good approximation to the inter-cluster

distance. To construct a good set of representative points, the algorithm uses a simple method

for selecting representative points that will be described in the Algorithm 1 and explained after-

wards.

When dealing with large data sets with even greater size, the CURE algorithm also uses

the idea of randomly sampling partitions of the data, clustering them and merging the resulting

clustering solutions. This approach will be explained in Algorithm 2.

Pseudo-code of the CURE algorithm

The pseudo-code of the algorithm is presented in Algorithm 1.
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Algorithm 1 The CURE Algorithm
procedure CURE(The data set X , The number of clusters k)

Create a min-heap H
for all x̄ in X do

Set x̄.closest to the closest neighbor of x̄
5: Set x̄.representatives to x̄

Insert x̄ in H using the distance of x̄’s closest neighbor as the heap criterion
end for
Create a kd-tree T , containing all n points of the data set X
while |C| 6= k do

10: Extract v from H, the cluster on the top of the min-heap
Extract v.closest from H, the closest cluster of v
Merge clusters v and v.closest, using algorithm 2, creating a new cluster w
Insert w in the min-heap
Set w.closest to a point in infinity

15: Remove the representatives of v and v.closest from the kd-tree
Insert the representatives of the new cluster w in the kd-tree T
for all cluster t in H do

if ||w,w.closest||min
2 is greater than ||w, t||min

2 then
There is a cluster closest to w than the current, make w.closest = t

20: end if
if t.closest is either v or v.closest (the current closest cluster of t changed) then

if ||t,w||min
2 is greater than ||t, t.closest||min

2 then
The new closest cluster must be found using the representative set
Query the kd-tree for the closest points of t:

25: t.closest = closest(T, t, ||t,w||min
2 )

else
The new closest cluster in relation to t must be w, i.e., t.closest = w

end if
Relocate t in the heap

30: else if ||t, t.closest||min
2 is greater than the distance ||t,w||min

2 then
Update the current closest cluster of t to w, i.e., t.closest = w
Relocate t in the heap

end if
end for

35: Insert the new cluster w in the heap H.
end while
return the clustering result.

end procedure
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Line 2 of the algorithm describes the initialization of a min-heap structure for storing the

current minimum pairwise distances of all clusters. Min-Heaps are useful for retrieving (and

removing) the smallest value of a set of points in O(log(n)) time, in this case, the most similar

clusters.

The loop presented in line 3 describes the initialization process of the algorithm. It creates

n clusters with one element each and then finds the nearest neighbors of all clusters in O(n2)

time.

After that, it inserts the resulting clusters in the min-heap in O(nlog(n)) time using the

distance of the closest cluster as the heap criterion. After the initialization process, the first

heap-deletion operation will remove the cluster v, whose distance to its neighbor v.closest is the

smallest of the data set.

Line 12 refers to the merge operation, the core of the CURE algorithm, which is responsible

for taking the two closest clusters, merging them and selecting a proper set of representative

points. The merging procedure is presented in Algorithm 2.

After the clusters are merged, the algorithm updates the heap structures in the for-loop

beginning on line 17, so that the next heap removal returns the proper pair of closest clusters.

For implementing this step, it is necessary to find the points inside a base’s region. The kd-

tree is essential for this, since this data structure is designed for efficiently retrieving the points

around a region of the space in a given radius.

The update procedure works by iterating over each element t of the heap H and performing

the following operations.

1. Updating the closest cluster of the newly created cluster w (the i f block beginning on line

18).

2. Verifying if the current closest cluster of t is either v or v.closest (the i f block beginning

on line 21). If this is the case, the closest cluster of t must be updated, because v and

v.closest were merged into w. For this, the algorithm uses the kd-tree to find the points

around t in a radius equal to ||t,w||min
2 . At least the closest representative point of w will

be returned. But the closest point may not be the closest representative point from t, since

the change in representatives may result in another cluster being closest to t. In this case,

t.closest is updated. If the comparison fails, this means that the newly formed cluster is

closer than the old closest cluster (the else clause (line 26)), so, it must necessarily be the

new closest cluster from t, since no other cluster was created.
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3. Relocating t in the heap in O(log(n)), i.e., performing the necessary “promotes” or “de-

motes” for maintaining the heap structure (line 29).

4. Updating t.closest. If the closest cluster to t is neither v nor v.closest, but the newly

formed cluster w, it is closer than t.closest. Update t.closest to w and update the heap

(the if block beginning in line 30).

Algorithm 2 The CURE Algorithm, Merging Procedure
procedure MERGE(Cluster v, Cluster u, The number of representatives c)

Initializes the set of representatives, Rep = /0
Unite clusters v and u, w = v∪u (only the representatives)
Calculate w.centroid, the centroid of the union of v and u

5: Initializes the set C with the most distant point of w in relation to the centroid
for do i = 2 . . .min(c, |w|)

Set dmin to zero
for each point p of w do

if The minimum distance d, between p and C is greater than dmin then
10: Set dmin to d

Set pmax to p
end if

end for
Add pmax to the set of representatives Rep

15: end for
Set the representatives of w to Rep, w.representatives = Rep

end procedure

The algorithm 2 first unites the set of representative points of the clusters that are being

merged (line 3) and calculates the centroid of the merged set w (line 4). Each iteration of the

for loop (line 6) adds one more representative point into the set of representatives until the size

of the set is c or there is no point left in the set w.

The procedure initializes the set of new representatives with the most distant point of w

in regards to the calculated centroid (line 5). After that, for every other point p of set w, the

distance between p and the current set of representatives, Rep, is calculated (line 9) using a

distance metric defined in Equation 3.5. The farthest point from the current set of representatives

Rep is added to it.

D(p,Rep) = min(||p,r||2,∀r ∈ Rep) (3.5)

All the distance calculations between clusters are performed using only their representatives.

The actual distance metric between two used clusters may vary. The authors suggest the use

of the minimum of all pairwise distances between the points of the two clusters, as defined in

Equation 3.5.
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Finally, to speed up the CURE algorithm even more for dealing with large data sets, p

random, independent partitions of equal size ( f = n/p) are created from the original data set.

The clustering process is performed in each partition until there are k clusters in each one of

them. At this point, the algorithm finishes partitioning by running the CURE algorithm again on

the pk clusters generated by the partial clustering phase. Algorithm 3 describes this algorithm.

Algorithm 3 The Adapted CURE Algorithm for larger data sets
procedure BIGCURE(Data set D, The number of clusters k, Distribution Factor f )

Initializes S = /0
while |D|> 0 do

Create set R, Randomly removing f elements from D (or |D| if |D|< f )
5: Run the CURE algorithm on R, retrieving the clustering result C. The clustering

result is a set of clusters with their representative points
Add the clustering result into set S

end while
Run the CURE algorithm on S, retrieving the final clustering result C f inal

end procedure

The previous algorithms reduce the complexity of the overall clustering process from O(n2log(n))

to O( f 2log( f )r/ f ).

3.1.2 CLARANS

The CLARANS algorithm (NG; HAN, 2002)(Clustering Large Applications based on ran-

domized search) is a randomized searching algorithm that aims to find k medoids (centroids that

are points of the data set) that minimize the overall SSE cost of the clustering task. This algo-

rithm combines ideas of two other classical algorithms: the PAM (Clustering Around Medoids)

(WONG; LUK; HENG, 1997) and the CLARA (Clustering LARge Applications (WONG; LUK;

HENG, 1997) algorithms.

PAM randomly selects k medoids from the whole data set and tries all possible exchanges of

one medoid in the current solution, keeping the one that minimizes most the SSE. This algorithm

is greedy and deterministic, it never backtracks once a decision is made and it always follows

the best available path, even if this path leads to bad solutions in the future. The algorithm halts

when no improvement is found in the current iteration. Those are characteristics of algorithms

that tend to fall into local minima. The authors claim that this algorithm is only suited for data

sets that have at most 100 points. This number is smaller than the vast majority of data sets

available in the literature and very far from the actual requirements of real-world applications.

For improving the algorithm, a modification was developed: to cluster large data sets, the



3.1 Traditional Methods for Clustering Large Data sets 33

CLARA algorithm takes a random sample of limited size of the original set and uses the PAM

algorithm to find a solution for the simplified problem. The algorithm repeats this procedure a

given number of times, always starting from a different set of sampled points, calculating the

SSE with regards to the whole data set and keeping the best solution found so far. It relies on

the fact that if this repetitions are performed many times, eventually a good set of representative

points will be randomly selected.

The CLARANS is an improvement over CLARA algorithm, and may be explained with a

simple graph abstraction: suppose a graph G, in which the nodes represent a possible medoid

selection. Edges are valid transformations from one solution to another that exchange a single

medoid. Figure 3.2 illustrates this concept. Two nodes are directly connected by an arc if they

differ only by one medoid.

{1,2}

{1,3}

{1,4}

{2,3}

{2,4}

{3,4}

Figure 3.2: Example of a graph abstraction of the CLARANS algorithm. Vertices represent
possible solutions (medoids) and edges, valid transitions. In this example, the data set size is
n = 4 and the number of clusters k = 2.

CLARANS starts with a random node representing a solution and randomly visits its neigh-
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bors, always exchanging the current solution with a random neighbor if it has a smaller SSE.

Also, from the current best solution S the algorithm explores worst solutions until a given num-

ber of hops (numLocal) is reached. If no better solution is found after numLocal hops, the

algorithm falls back to the best node found so far. This procedure is repeated until a given

stopping criterion is reached, in this case, the number of iterations maxNeighbors. The ability

to work in large data sets comes by the iterative nature of the algorithm, i.e., a solution is avail-

able quickly. Also, there is an optimization in the error calculation of neighbors solutions, i.e.,

there is an efficient way for calculation the error of a new solution given the error of the parent

solution. Algorithm 4 describes the CLARANS algorithm.

Algorithm 4 The CLARANS Algorithm
procedure CLARANS(The data set X , The worst solution tolerance numLocal, Number
of iterations maxNeighbor)

i = 0
Set best to a random node of G (graph abstraction of Figure 3.2)
while i < maxNeighbor do

5: minCost = ∞

Set the current search node cur to a random node of G
j = 0
while j < numLocal do

if the SSE of cur is smaller than the SSE of best then
10: Set the current best node to cur

j = 0
else

j++
end if

15: Set the current search node cur to a random neighbor of best
end while
i++

end while
Return the best node, best

20: end procedure

This algorithm includes a smart calculation of the SSE difference between neighbors. This

optimization is especially useful when the number of clusters is large. The intuitive idea of the

optimized SSE update procedure is simple. Suppose that the algorithm creates a neighbor of the

current solution by swapping the medoid Om to Op. For each other point O j of the data set, we

have four possible scenarios:

1. O j belongs to the cluster defined by Om and, after medoid swap, it does not change to

Op, but to a cluster defined by other medoid, O2, increasing the clustering cost, i.e.,

||O j,Op||2 ≥ ||O j,O2||2.
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The following expression defines the clustering cost increase, C1:

C1 = ||O j,O2||2−||O j,Om||2 (3.6)

Figure 3.3 illustrates the concept, after the swap, the closest medoid form O j is O2, not

Op.

Oj
d1

d2

Om

O2

Op

Figure 3.3: If the new medoid Op is farthest than O2, the cost of O j will increase, (d1 < d2)

2. O j belongs to the cluster defined by Om and, after medoid swap, it changes to Op, i.e.,

||O j,Op||2 ≤ ||O j,O2||2. This exchange may reduce or increase the overall clustering

cost.

The following expression defines the clustering cost difference, C2:

C2 = ||O j,Op||2−||O j,Om||2 (3.7)

Figure 3.4 illustrates the concept, after the swap, the clustering cost may or may not

decrease.

Oj

Om

Op

O2

d1

d2

(a) Cost of O j increases (d1 <
d2)

Oj

Om
O2

Op
d1

d2

(b) Cost of O j decreases (d1 <
d2)

Figure 3.4: In both Figures, the new medoid Op is closer to O j than the medoid O2. But in
the first Figure, Op is farther than Om, yielding a greater SSE cost. In the second Figure, the
opposite occurs, yielding a smaller SSE cost.

3. O j belongs to cluster O3 and, after medoid swap, it remains in that clusters, i.e., ||O j,O3||2≤
||O j,Op||2. This exchange does not modify the overall clustering cost.

C3 = 0 (3.8)

Figure 3.5 illustrates the concept, after the swap, the clustering remains the same.
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Oj

Om

d1

d2

Op

O3

Figure 3.5: Medoid Om is exchanged with medoid Op, however, the new medoid is still far from
O j’s medoid, O3 (d1 < d2).

4. O j belongs to other cluster O3 and, after medoid swap, it exchanges clusters, i.e., ||O j,O3||2≥
||O j,Op||2. This exchange always results in a decrease in the overall SSE, given by:

C4 = ||O j,O3||2−||O j,Op||2 (3.9)

Figure 3.6 illustrates the concept, after the swap, the clustering cost decreases.

Oj

d1

d2

O3

Op

Figure 3.6: If point O j is inside a cluster defined by a point other than Om and exchanges
clusters, then its cost certainly decreases (d2 < d1).

The clustering gain of a neighbor swap is given by the sum δ = ∑
i=1
i<=4Ci. If the value is

negative, then the neighbor has a better (smaller) SSE than the node that originated it. The SSE

of the whole clustering result need to be calculated only once. When a new neighbor is created,

one needs only to add the δ to the previous SSE value to get the next, using the four rules

defined above.

The previous set of rules reduces the complexity of calculating the SSE of the new solution

from O(nk) (scan all points for each medoid to get the smallest distance) to O(n) (scan all points

and use the appropriate rule to get the value for δ .

3.1.3 BIRCH

BIRCH (Balanced Iterative Reducing and Clustering Using Hierarchies) is a clustering

algorithm that takes into account resource availability while solving the clustering problem.

Memory constraints may be used for tuning the algorithm, minimizing I/O cost. It requires
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only one pass in the data set to cluster it. Additional scans to improve the quality of the cluster-

ing results are optional.

The advantages of this algorithm are many:

1. It is a local algorithm. Each decision of the cluster assignment for each point does not

require scanning of the whole data set, just a limited neighborhood.

2. It has a mechanism for treating outliers and compressing high density regions of the space

into a single point.

3. It adapts itself to the quantity of memory in the system, minimizing I/O cost.

4. It does not require the whole data set in advance, being able to generate partial solutions

as new data arrives.

BIRCH relies on the use of a complex data structure called Clustering Feature Tree (CF

Tree). A CF-Tree summarizes large sets by building a B-Tree-like structure that contains in

each node a feature vector consisting of important characteristics of all descendants of that

node. The feature vector i is a triple (Ni, X̄i,X2
i ) containing the quantity of all descendants

Ni, the average point (centroid) of all descendants X̄i and the sum of the squared points X2
i .

The amount of nodes in the CF-Tree regulates the memory usage and the time that posterior

clustering algorithm will take to cluster the summarized data.

The construction of the CF-Tree follows the idea of the B-tree. Points are inserted into the

closest nodes, and after the insertion the node may be split under certain conditions, increasing

the number of nodes in the data structure. While building the CF-Tree, some conditions must be

established for splitting a node. In (HARRINGTON; SALIBIáN-BARRERA, 2010) three con-

ditions were proposed to improve the tree building processes firstly developed by (ZHANG;

RAMAKRISHNAN; LIVNY, 1996). These conditions regulate the size and the quality of

the CF-Tree and consequently the amount of memory used to summarize the whole data set

(ZHANG; RAMAKRISHNAN; LIVNY, 1996).

The first condition is the closeness criterion, the maximum distance that a point must have

in relation to the node centroid in order to be inserted in that node. If this distance is too small

the tree will be sparser, summarizing less the data set.

The second condition is the compactness, the trace of the covariance matrix of the target

node and the point to be inserted. The trace of the covariance matrix informs the variance

(i.e. dispersion) of the cluster. This parameter complements the closeness criterion by reducing
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sensibility regarding insertion order. If one uses only the closeness criterion, the following

undesired case may happen. Suppose that we have n points a1,a2, . . .an. If the points are in the

same line and the distance between consecutive points is smaller than the distance between the

new point and the current centroid, the new position of the centroid will shift towards the new

point, allowing for distant points from the original point a1 to belong to the same cluster.

The last condition is the branching factor that regulates the maximum amount of entries

that each node may hold. The bigger the branching factor the smaller the tree height. This

parameter should be smaller than the memory page size of the system that the algorithm is

running, avoiding excessive paging.

The pseudo-code of the tree-building algorithm is presented in Algorithm 5.

Algorithm 5 The CF Tree Building Algorithm
procedure CF TREE(The data set D, The closeness parameter c, The compactness co, The
branching factor b)

for each x in D do
Transverse the tree using the centroid of the nodes and find the closest leaf L in

relation to x
Insert x in the leaf L, updating the summary

5: if The insertion of x in the node L violates one of the three conditions then
Split the node L creating two more nodes L1 and L2 using the farthest points of

L as seeds and adjust the summary to reflect the descendants of L1 and L2 for the new nodes
Insert the most distant node from L1 and L2 in the parent node
if There is a overflow in the parent node then

Recursively split the parent nodes until no split is necessary or until the root
node is reached, in this case increase the height of the tree by one

10: end if
end if

end for
end procedure

The procedure for adjusting the summary (in line 4) is trivial: the feature vectors just need

to be added. To split nodes (lines 6 and 9), the procedure is similar: the new parents only need

to add the summary of its children.

Once the tree is built, any traditional clustering algorithm may be employed for clustering

the summary of the data (the leafs of the CF-Tree). In this work we used the k-means algorithm

to cluster the resumed data.
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3.1.4 DBSCAN

DBSCAN (SANDER et al., 1998) is a classical clustering algorithm developed for large

spatial data sets. This heuristic uses the idea of density for grouping points with arbitrary shapes

in the same cluster. If a given area of the data set is relatively denser then its surroundings, this

area is considered a cluster. Also, isolated points with density below a given threshold MinPts

are considered noise.

The algorithm uses the notion of direct density reachability and density reachability. Two

points p1 and p2 are direct density reachable from one to another (with parameters ε and

MinPts) if their distance is less than ε and there are more than MinPts points in the neighbor-

hood of point p1. Therefore, two points p1 and pn are density reachable with parameters ε and

MinPts from one to another if there exists a sequence of direct density reachable p1, p2, . . . , pn

points that connects them. The set of points that are mutually density reachable are called core

points. Figure 3.7 exemplifies the concepts discussed above.

A C

B

N

Figure 3.7: Example of a cluster formed by DBSCAN (MinPts = 3). The red region contains
core points, i.e., points that are mutually density reachable. Points B and C are density reachable
from A, however the opposite is not true. There is only one point in their neighborhood. Point N
is regarded as noise since it is not density reachable and its neighborhood has less than MinPts
points.

Each point is visited at least once to have its neighborhood explored. The final clusters are

formed with all sets of density reachable points.

The DBSCAN algorithm requires two parameters: the sampling radius ε that regulates the

size of the neighborhood and the noise threshold MinPts. The pseudo-code of the algorithm is

presented in Algorithm 6.
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Algorithm 6 The DBSCAN Algorithm
procedure DBSCAN(The data set D, the sampling radius ε , the noise threshold MinPts)

for each point x of the data set D do
Visit x
Retrieve N, the ε neighborhood of the point x

5: if The size of N is less than MinPts then
Mark x as noise

else
Find the set E of all density reachable points of x that were not visited yet and

create a new cluster with E
EXPAND(x, N, ε , MinPts)

10: end if
end for

end procedure

Line 3.1.4 is implemented as follows:

Algorithm 7 The Expansion Procedure
procedure EXPAND(A base point x, The neighborhood of N, ε , MinPts)

add x to a new cluster C
for all point P′ in N do

if P’ is not visited then
5: mark P’ as visited

N′ = regionQuery(P′,ε)
if |N′|>= MinPts then N = N joined with N′

end if
end if

10: if P′ is not yet member of any cluster then add P′ to cluster C
end if

end for
end procedure

This clustering algorithm has one important particularity: there is no way to directly set how

many clusters it will return. This parameter is implicitly adjusted by the density sampling radius

ε . This fact may be advantageous if the average density of the clusters is known, however this

is rarely the case. Also there is no clear indication on how to set this parameter with a "good"

value, depending on the distribution of the data this parameter may vary greatly.

The experiments require strict control of the overall number of clusters k created at the end

of the algorithms. Since there is no way to explicitly set k in this algorithm, a meta search

over the values of ε was performed to compare effectiveness of the algorithms. A binary search

algorithm defined in Algorithm 8 was used to search a good value for ε , since the function that

defines k is uni-modal, if the desired number of clusters exists in the ε search space it will be

found. The algorithm for finding k, given a search interval, is presented below.
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Algorithm 8 Local search for finding the value for ε that generates k clusters
procedure LOCAL SEARCH(Beginning of the interval a, End of the interval c, Max itera-
tions maxIt)

Run DBSCAN with ε = a and get the number of clusters generated, cluA
Run DBSCAN with ε = c and get the number of clusters generated, cluC
if cluA = k then

5: Return a
else if cluC = k then

Return c
else if cluA < k or cluC > k then

Return an error
10: end if

i = 0
while i < maxIt do

b = a+c
2

Run DBSCAN with ε = b and get the number of clusters generated, cluB
15: if cluB = k then

Return b
end if
if cluB < k then

c = b
20: else

a = b
end if

end while
Return an error

25: end procedure
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The algorithm presented in the Algorithm 8 implements a simple local search for finding a

good value for ε . The algorithm assumes that the value of k in function of ε is a monotonically

decreasing function, i.e. the greater the value of ε the smaller the value of k.

The procedure starts with a pre-defined interval [a,c], supplied by the user, and retrieves the

number of generated clusters for both ε = a and ε = c. If the value found using a(c) is smaller

(greater) than the desired cluster amount k, the algorithm halts with error (line 9). The reason

is that the first value of a (c) returns the biggest (smallest) number of clusters possible. If the

biggest (smallest) value for the number of clusters is smaller (bigger) than the desired number,

the algorithm won’t be able to find the desired value, so the algorithm halts with error. If this

occurs, the initial bounds must be reconfigured to a more adequate set of values. If one of these

values happens to be on the desired set of values, the algorithm returns with success.

The algorithm proceeds by retrieving the number of generated clusters in the middle of the

interval b= a+c
2 (line 14). If the correct number of clusters is found (line 15), the algorithm stops

and returns b. Otherwise, it repeats the search procedure on intervals [a,b] or [b,c], depending

on the value of nCluB (line 18).

This algorithm will find the value of k in a finite number of steps, if the interval is properly

set and the algorithm is capable of finding such solution. In many instances of the performed

experiments this algorithm could not found the proper value for ε , thus, invalidating some

experiments for this algorithm.

3.1.5 R-Tree

In order to implement the DBSCAN algorithm properly, a way of indexing multidimen-

sional spatial data efficiently using hyper-spheres in large data sets is necessary. The data struc-

ture R-Tree (GUTTMAN, 1984) is designed in a way that retrieves efficiently objects (points

or rectangles) of a arbitrary rectangular region of the space. However, this algorithm requires a

pre-processing stage whose runtime is significant.

An R-Tree is very similar to B-Trees, being a self-balancing structure. Its leaf nodes contain

points of the data being stored. The structure is designed so that few nodes must be visited to

return the nodes in a given rectangular region (Region Query). It supports random access queries

and, although not strictly required in this work, has a dynamic nature. Points can be inserted

and deleted with no extra cost once the structure is built.

According to (GUTTMAN, 1984), an R-Tree does not achieve good worst case perfor-

mance, it can perform as slow as the naive approach, but has good real-world response times.
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Figure 3.8: Naive X R-Tree runtime for the first three data sets

Also, the R-Tree does not behave well in high dimensional data sets.

In Figures 3.8, 3.9 and 3.10 it is shown the effectiveness of the R-Tree algorithm in a suite

of tests using the benchmark data sets. Batch inserts and queries were performed using the

R-Tree algorithm and the runtimes were compared to the naive approach of scanning all data

points to verify, which points are in a given hypersphere.

This experiment consists in querying 1000 random regions for points in the benchmark data

sets. The querying region is defined as follows: select two random points pr1 and pr2 of the

space. The point pr1 will be the center of the hypersphere and the radius will be the distance

between pr1 and pr2 multiplied by a random, uniform factor between 1.0 and 0.001.

From the bar plots it is clear that the R-Tree algorithm performs very well in low dimen-

sional data sets. The only data set that the use of R-Tree is not advantageous is the Mini-

BooNE_PID. That is probably due to the high dimensionality of the instances (50 dimensions).

Finally, to analyze how the R-Tree algorithm processing time behaves when the data set

scales, a second experiment was performed in a synthetic, low dimensional (2 dimensions)

data set, following the same protocol of the previous experiment. The results are presented in

Figure 3.11
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Figure 3.9: Naive X R-Tree runtime for the forth to the seventh data sets
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Figure 3.10: Naive X R-Tree runtime for the last three data sets
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Figure 3.11: Time comparison considering the synthetic data set, varying the size

From the Figure 3.11 it is clear that both algorithms scale linearly with the database size,

but the R-Tree algorithm has a much better scalability, as expected.

It is also apparent that the R-Tree algorithm is well suited for the benchmark data sets being

considered, with exception of the high-dimensional MiniBoone_PID data set.
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Chapter 4
Co-evolutionary Clustering

Evolutionary algorithms are a soft computing technique for finding good solutions for dif-

ficult optimization problems (in the NP−Hard sense). Examples of classical evolutionary

algorithms include Genetic Algorithms, Particle Swarm Optimization and Differential Evolu-

tion. All these algorithms perform a guided random search on the space of possible solutions

by iteratively changing and combining individuals of a population. Although useful for solving

problems with a single objective function, this approach is not directly applicable to constrained

problems. However, it is always possible to adapt common evolutionary algorithms for solving

single-objective, constrained problems by using penalty functions. Penalty Functions transform

a constrained, single-objective problem into a single-objective problem by worsening the global

solution to compensate for a bad solution on another secondary criteria. Expression 4.1 presents

the general penalty function approach.

f ′(~x) = f (~x)+ p(~x) (4.1)

The penalized function f ′ equals the original function f plus a penalty function p, defined

by the user. The use of such function usually introduces new parameters to the problem, which

are in many occasions, difficult to configure. For instance, if one wants to minimize a function

f , restricted to a set inequality functions ~g, the final fitness function could be f plus a constant

if any of the restrictions is violated, or zero if none is violated. This approach tends to fail

in complex optimization problems by falling into local minima because it is hard to choose

a good value for the penalty constant without some a priori knowledge of the problem. The

challenge of solving complex, restricted problems motivated the development of other methods

for optimizing these kind of functions that do not require the configuration of penalty factors by

the user.
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In the recent years, some co-evolutionary algorithms were developed for dealing with com-

peting dual-objective problems. Co-evolutionary algorithms differ from traditional evolutionary

algorithms by maintaining two or more populations at the same time for optimizing different,

but coupled, objective functions. For instance: the design of reliable ship vessels that maxi-

mize the ship performance (the more reliable the vessel the more inefficient it tends to be) or to

solving complex, non-convex optimization problems with non-linear restrictions.

The mechanics of co-evolutionary algorithms is simple. Both populations try to maximize

their profit in respect to the decision of the other population until neither one can improve their

solution independently. For instance, suppose the existence of two populations, one trying to

maximize the speed of a vehicle in a given terrain by changing some parameters of the project

design and other population trying to minimize the speed of the vehicle by changing terrain

parameters. The idea is that both populations evolve until neither one can improve their fitness

given the best solution in the other population. For instance, given a type of terrain, the speed of

the vehicle cannot improve no matter the design parameters, i.e., this is the best possible design

for that terrain type. Similarly the terrain population can not decrease the speed of the vehicle

by changing terrains parameters, i.e., this is the worst possible terrain for that project.

The configuration that does not allow for any individual in both population to improve their

fitness without changing individuals of the other population is called a Nash Equilibrium. In this

state, no population can improve their quality individually. In the example, the result is a robust

vehicle design (works well in all terrains) and the hardest terrain for that design (a terrain that

is difficult for all designs). This approach results in good solutions for the worst case possible.

This Chapter presents the contribution of this work: the development of a co-evolutionary

algorithm for clustering large data sets called COCLU. Co-evolution is employed in this work

for choosing the most difficult points to cluster in one population and the best algorithms to

cluster those points, in another population. The subset of points that are the hardest to cluster

contributes the most to the SSE of a given clustering solution. Similarly, a good set of algo-

rithms for hard points consists in algorithms capable of clustering well those points, reducing

the overall SSE. Experiments show that selection of difficult points to cluster considering a

variety of clustering algorithms in the antagonistic population yields a good overall clustering

result.

Section 4.1 defines in detail the concept of co-evolutionary algorithms, Section 4.2 presents

the pseudo-code of the COCLU algorithm with some important consideratons and Section 4.3

presents the classical algorithms used in the population of clustering algorithms.
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4.1 Co-evolutionary Algorithms

Co-evolutionary algorithms try to mimic the idea of predatory or symbiotic behavior that

regulates populations in nature. Symbiotic approaches enforce cooperation of populations for

achieving a common goal, while predatory behavior introduces competition: if the prey pop-

ulation wishes to survive, it has to adapt itself to its predators. The opposite is also true, i.e.,

the predator must react to changes in prey configuration if it wishes to maintain its existence.

In nature, this arms race constitutes an important evolutionary force that leads to very complex

evolution patterns.

Symbiotic Co-evolution

Symbiotic Co-evolution is useful for optimizing two populations towards a common goal.

For instance, this approach is applied on the GENOCOP III method (GEnetic algorithm for Nu-

meric Optimization of COnstrained Problems) (MICHALEWICZ; NAZHIYATH, 1995). This

approach maintains two sets of populations: Sp, called “Search Points” and Sr, called “Refer-

ence Points”.

A special Genetic algorithm is used for evolving both populations. The first population has a

more exploratory nature, accepting occasional unfeasible solutions, while the second population

maintains a pool of strict feasible solutions. The second population evolves more slowly, in a

ratio of one iteration per r iterations of population Sp, where r is a parameter of the algorithm.

Because the first population may contain unfeasible individuals, the second population is

used to calculate its fitness. Since all individuals of the second population are feasible, their fit-

ness is simply their objective function value. The objective function value of a given individual

taken from the first population is calculated as follows:

f p(~xi)=

{
f (~xi) If individual xi is feasible,

f (~w),~w = a~z+(1−a)~xi If individual ~xi is infeasible,~z is randomly taken from Sr.

(4.2)

The variable a is a random real number in the interval [0,1]. This number defines how much

of the feasible individual~z must be used for building the point that will be evaluated. If a = 1,

the evaluated point will be~z itself, a feasible solution from the second population, if a 6= 1 the

individual being evaluated is a hybrid between a feasible individual of the second population

and the unfeasible individual of the first population.

Since the second population is always feasible, f (~w) will also be feasible given a suffi-
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ciently large value for a. The optimum value of a is the smallest possible taken from an interval

[0,1]. This value must generate an individual ~w that satisfies all constraints. Since the optimum

value of a varies a lot with the objective function and the considered individuals, it is not possi-

ble to precisely determine it. Thus, a is randomly selected in the interval between 0 and 1 until

a valid value is found. This searching may take many iterations, so it is advised to set a budget

condition: if no feasible solution is found after rsearch iterations the value a = 1 is used, yielding

a feasible solution.

If the resulting transformed vector ~w has a smaller objective function, it replaces the vector

~z taken from the Reference Points. Also, if this happens, ~w may replace xi with probability p, p

being a parameter of the algorithm.

The expected behaviour is that as iterations passes, both populations will converge to a

feasible solution. The best feasible solution is then taken from the populations as the response

of the algorithm.

This algorithm is an example of how populations may collaborate for achieving a common

goal. The search population uses the reference population for constructing feasible solutions,

while the reference population uses individuals generated by the search population for com-

posing better feasible solutions. This solution depends on a specialized operator defined in

Equation 4.2 for mixing solutions. The operator is not always effective and not directly appli-

cable for solving the problem of clustering large data sets.

A more recent work (LIU et al., 2007) applies another approach: two populations of points,

one minimizing the fitness, regardless of the constraints and the other minimizing the constraints

violations, regardless of the fitness function. The algorithm works by using the first population

to evolve solutions considering only the fitness, ignoring the constraints, after some iterations,

the solution tends to be very good in minimizing the objective function, but unfeasible. The

second population evolves by considering only the constraints violations, i.e., finding solutions

that are as far away as possible from the restrictions, regardless of the fitness value. The “more

feasible” an individual, the better it is. After a given number of iterations, migration occurs

from one population to another and the process continues until convergence.

The idea is that populations will mix feasible solutions, but poor in the fitness sense, with

good fitness solutions, but poor in the feasibility sense. Over time both populations will con-

verge to the same set of points.

There are many other approaches for solving optimization problems with the use of coop-

erative co-evolutionary techniques. Unfortunately, the majority of them require some a priori
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knowledge of the problem that is difficult to assess in the general case. Predatory approaches

tend to be more directly applicable for the general optimization problem, as shown in the next

Section.

Predatory Co-evolution

This work will rely on the use of a predatory (competitive) approach for solving the clus-

tering problem called “Co-evolutionary Min-Max”. This approach is simple in its pure form:

suppose that two populations, prey population and predator population compete in the same

environment. The adaptability for a given individual is measured by how well it can perform

against the best individual of the antagonist population. To avoid extinction, both populations

must continuously adapt themselves in relation to each another. This arms race of competing

populations yields a co-adaptation between prey and predator, i.e., if the predator population

evolves in a certain way, the prey population must also evolve if it wants to keep alive. A popu-

lation will always adapt itself to respond for changes in the opposite population. Under the right

circumstances, this adaptive behaviour will go on until a certain equilibrium is reached. At this

point, prey and predator converge to their optimal configuration in relation to each other. I.e.,

it is not possible to improve the solution quality of one individual in population A in respect to

the best individual of population B, and vice-versa.

In the last few years, a lot of effort has been put on investigating the use of competitive

co-evolutionary methodologies for solving complex problems. The general idea of having two

populations evolving towards different goals and interacting somehow is greatly explored in the

literature.

There are many ways to encode both populations and how the interaction will take place.

In (PAREDIS, 1994) the objective is to minimize a given formulation restricted to a set of

constraints. One population encodes the parameters of the fitness functions and the other the

constraints. When a solution of the first population is not feasible, its fitness is the objective

function plus a penalty constant. When all constraints are met, the fitness is just the value of

the objective function. The fitness of the constraints are calculated in function of how many

individuals of the opposite population failed to satisfy it.

(BARBOSA, 1996) uses co-evolution with two populations for solving the augmented La-

grangian version of restricted optimization problems. One population encodes the parameters of

the fitness function and the other encodes the Lagrangian values of the augmented formulation.

A GA algorithm is used for solving the augmented Lagrangian formulation of the problem by

evolving both the function parameters and the Lagrangian multiplier’s in a co-evolutive manner.
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Our previous work (FABRIS; KROHLING, 2011) uses the Differential Evolution (DE) al-

gorithm, with two populations, coupled using co-evolution techniques for solving different hard

optimization problems with restriction. The approach was successful in finding the optima in

all tested benchmark functions taken from the literature.

The present work combines classical clustering algorithms via co-evolution, as far as we

known, for the first time for solving the problem of clustering large data sets.

4.1.1 Using Co-evolution for clustering large data sets

This approach relies on the fact that not all points are equally important for the clustering

process. It is possible to select a subset of the original data set without changing the final

clustering result. Figure 4.3 presents this idea: if the clustering algorithm is run in a subset of

good, selected points, it is expected that the final clustering result will be the same. However,

not every subset is a good one. Also, random selection of points tends to leave important points

out of the clustering procedure, resulting in poor results.

From this point forward, “selected points” will denote a subset of points of the original data

set D that is being considered for the clustering algorithms. Similarly, “non-selected points”

will denote the set of points that is not being considered in the clustering algorithms.

(a) Original data set - All points will be used
as input for the clustering algorithm. The “x”
marks the calculated centroids

(b) A good point selection - The clustering
result in the sampled (selected points) set is
the same as the original data set

(c) A bad point selection - The clustering re-
sult in the sampled set (selected points) is
worse than the original data set

Figure 4.1: Example to demonstrate that some subsampling choices result in a far worse clus-
tering result. Here, the doted grey circles represent points being discarded (non-selected points)
and solid black circles points being considered (selected points). Figure (c) displays a clustering
result that yields a poor SSE result in the original data set.

It is clear that the selection of hard points to cluster (those farthest from the centroids)

generates poor SSE results when the underlying clustering solution is bad. Therefore, to find

good overall solutions, it is required to find hard points to cluster, i.e., a set of points that are
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the hardest to cluster for every possible centroid distribution. A good solution for those points

should yield also a good overall clustering result.

This work develops a way for iteratively building a hard set of selected points to cluster

given a current centroid solution. To select these hard points, the first step is to formalize the

notion of “easy” selected points in relation to a clustering solution. These easy points need

to be exchanged with harder points to improve the representativity of the selected point. The

easiness criterion considers how much a selected point influences a fixed clustering solution,

i.e., how the point contributes to the overall clustering result given a centroid solution. The

smaller the contribution (the closer they are from the closest centroid) the more probable must

be the swapping of that point to a random, non-selected point.

After some points swapping, the algorithm performs the adaptation of the centroids to the

newly selected points by updating the centroid’s position. In this step the selected points are

fixed and the clustering algorithms try to find a good solution for the new set of selected points.

The observed dynamic here is that centroids will migrate to the region that has the hardest

points, making the otherwise hard selected points easier. The centroids tend to chase regions of

selected points, while selected points flee from the centroids.

Once the new clustering solution is found, the algorithm loops to the first step and repeats

the point selection procedure. This two-step co-evolutionary procedure is repeated until a given

number of iterations is passed or convergence is reached.

The population of selected points is called Population A. As previously stated, it encodes

which points of the original data set will be used for clustering the data, i.e., a small set of

representative points that contains sufficient information for minimizing the SSE of the whole

population. The goal of the individuals in population A is to maximize the cost of the clus-

tering solutions generated by individuals of population B. The Population A also maintains

the best clustering solution for that specific clustering solution, i.e., the clustering solution that

minimizes the SSE of the selected points.

Individuals in population A suffer two modification operations: crossover and mutation.

Crossover works by randomly exchanging selected points of two individuals sampled from the

population A and generating one new individual. Mutation works by randomly picking a point

~a of population A, and randomly choosing a selected point p1 of~a. Next, a random non-selected

point (is in the point pool but not in ~a) p2 is also selected. After that, p1 and p2 are exchanged.

If p2 has a greater distance to the closest centroid than p1, the new randomized individual is

kept. If the distance between p2 to its closest centroid is smaller than p1, the operation discards
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this mutation candidate and tries again, for a maximum of ntries iterations.

Population B encodes a set of traditional clustering algorithms that aims to minimize the

clustering cost (SSE) given all individuals of population A. While population A evolves towards

the set of difficult points to cluster in the SSE sense, population B evolves towards selecting

the most efficient algorithms for clustering the points of population A. A small number of

algorithms is maintained in the algorithm pool and in each evaluation cycle of population B,

one randomly selected inactive algorithm and one randomly selected active algorithm are tested

against one randomly selected individual of population A, if the inactive algorithm has a smaller

SSE result, it becomes active, entering population B while the old active algorithm leaves pop-

ulation B.

For choosing both the best points and clustering algorithms, the fitness function for a given

individual must be defined. The fitness of a given individual x of population A, fp(~x), is calcu-

lated via the min-max method: the fitness of~x is the best clustering result (the minimum SSE)

considering all algorithms in population B. The fitness of a individual y in the population B is

the worst result (the largest SSE) resulting in running algorithm y in all individuals of population

A.

For population A, the bigger the value of the fitness function, the better the individual is.

Thus, after generating some new individuals via crossover and mutation, population is trimmed

to its original size keeping the SApop individuals with biggest fitness. Population A evolves

towards a sample of difficult points to cluster. If the sample size is big enough to represent the

whole population, the result of the clustering in the sample will converge to the result in the

whole data set.

Figure 4.2 shows a representation of the procedure where the individual xk is being evalu-

ated against all individuals of population B in order to calculate its fitness. In other words, the

clustering cost of the selected points in xk is evaluated against all clustering algorithms existing

in population B in the SSE sense. The fitness of individual xk is the smallest SSE considering

all solutions in population B. The bigger the value of the fitness of xk, the better the individual.

In other words, the most difficult set of points to group in the SSE sense is the one with greatest

fitness.

Figure 4.3 illustrates how selecting points that worsen the current solution found by algo-

rithms in population B improve the overall clustering result.
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Figure 4.2: Min-max representation

(a) Initial set of points - Bad point choices
leading to poor clustering results

d
d'

(b) Random swapping of points - Exchanging
the near point (with distance d′ to a distant
point in relation to the closest centroid, with
distance d).

dd'

(c) After the swap, the clustering algorithm
is run again and the centroids walk towards
a better configuration. The Resulting swap-
ping improved the clustering result slightly -
Another swapping selection is displayed, the
point with distance d′ will be replaced by the
point with distance d in the next iteration.

(d) The result of the previous point swap-
ping yields a much better overall clustering.
The generated clusters in the whole popula-
tion would generate the optimum solution in
this example.

Figure 4.3: The Figures illustrate how the swapping procedure of points iteratively constructs a
better solution on the original data set by choosing data points that worsen the solution found
in the selected set.
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Next Section describes the details of the COCLU algorithm, presenting general considera-

tions, pseudo code and the classical algorithms for small data sets used in the algorithm pool.

4.2 The COCLU Algorithm

In this Section the COCLU algorithm is presented in detail with important considerations

regarding performance and practical issues.

The COCLU algorithm uses the basic framework of the general co-evolutionary algorithm

for solving constrained optimization problems. Two populations A and B, with a coupled ob-

jective function f (~x,y) (~x coming from population A and y coming from population B), com-

pete towards opposite goals, an individual ~x, of population A, tries to maximize the functional

f (~x,B), defined as follows:

f (~x,B) = min( f (~x,y)∀y ∈ B) (4.3)

While an individual y, of population B, tries to minimize the functional f (A,y), defined as

follows:

f (A,y) = max( f (~x,y)∀x ∈ A) (4.4)

Both populations will go through the process of finding new solutions until they converge,

i.e., no improvement is possible in either one of them. This point is called the saddle point of

the min-max problem. The generic classical co-evolutionary algorithm for finding the saddle

point of the min-max problem is described in Algorithm 9.
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Algorithm 9 The generic co-evolutionary algorithm for solving a min-max problem
procedure COEVO(Number of Cycles (MaxCycles) , Number of Iterations on Population
A (MaxGenA), Number of Iterations on Population B (MaxGenB))

Initialize Population A
Initialize Population B

for each k = 1 to MaxCycles do
5: for each j = 1 to MaxGenA do

Evaluate new Population A
Generate new Population A

end for
for each j = 1 to MaxGenB do

10: Evaluate new Population B
Generate new Population B

end for
end for
Return the best individual of population A given some quality metric.

15: end procedure

The first steps of this algorithm involve the initialization of individuals in populations A and

B (line 2 and 3). The algorithm begins in the for loop in line 4, that controls how many times the

evaluation of populations A and B will be performed. The algorithm will repeat the adjustment

of populations A and B MaxCycle times.

After that, population A evolves for MaxGenA iterations ( the loop in line 5 ). The evolution

of population A includes evaluation of newly generated individuals (line 6) and generation of

new individuals (line 7).

The for loop in line 9 is analogous to the previously explained with the exception that it

operates on population B, instead of A. The concepts however, are identical. The encoding of

the individuals in the population and the details of procedures of initialization, generation and

evolution of populations A and B will be described in the following Subsections.

4.2.1 Encoding of the Individuals

The first step for applying some meta-heuristic to the problem of clustering large data sets

is to encode the problem properly so that the algorithms may perform the required operations

on individuals of the population.

Each individual in population A corresponds to a s-sized subset of distinct point indexes of

the original data set. The encoding of these individuals is a vector of size s containing in each

position a unique data point index of the original data set. This representation is convenient

for both performance and operation definition reasons. The parameter s regulates the summa-
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rization ratio of the co-evolutionary algorithm. If s is too big, there is no performance gain in

executing the co-evolutionary algorithm.

The definition of population A is formalized below.

~xi ∈ A, i > 0, i≤ Apop (4.5)

~xi ∈ Ns,s≤ n (4.6)

~xi, j 6= ~xi,k∀i, j,k,( j 6= k) (4.7)

Individuals in population B, on the other hand, are simply a fixed-sized set of clustering

algorithms extracted from a pre-defined algorithm pool.

4.2.2 Initialization of the Populations

Initialization is an initial sampling of the search space, before the first evolution iteration

begins. In this work it only happens once for each population. It is important that the random-

ized initialization procedure is broad enough so that the search space is not restricted to a small

subspace of all possible solutions.

Population A

Initialization of population A is a simple random uniform sub-sample of size s of the data

set D, performed multiple times. The only caveat is to remove repetitions from the generated

sub-sample. The following pseudo-code presents the initialization procedure:



4.2 The COCLU Algorithm 58

Algorithm 10 Population Initialization
procedure POPULATION INITIALIZATION(Size of the population (SApop), Number of sam-
ple points (s), The original data set (D))

A = []
for each i in [1..SApop] do

xtmp = []
5: for each j in [1..s] do

a = rand(1, |D|)
while a ∈ xtmp do

a = rand(1, |D|)
end while

10: xtmp, j = a
end for
Ai = xtmp

end for
return A

15: end procedure

This algorithm merely builds the initial population A by creating for each individual of

the population a random sample of unique points. This algorithm is not suitable for generat-

ing random initial solution when |D| and s are large. The while loop (line 7) tends to take a

considerable amount of time for randomly generating all distinct values for Ai in these cases.

Population B

The population B consists of the clustering algorithms. The initialization of the population

is simple: one needs only to sample sb algorithms from the algorithm pool to initialize the B

population and randomly select an individual of population A for solving the reduced clustering

problem using a traditional algorithm.

4.2.3 Fitness Evaluation

The algorithm for evaluating the fitness of the individuals in both populations is similar; one

has to select an individual in one population and iterate over the other population looking for the

minimum (for an individual of population A) or the maximum (for an individual of population

B).

Population A

In the Algorithm 11, the algorithm for calculating the fitness of a individual~x is presented.



4.2 The COCLU Algorithm 59

Algorithm 11 Evaluation of the fitness of an individual of population A
procedure FITNESS EVALUATION OF POPULATION A(~x: Individual of A, B: Population

B)

Fitbest = ∞

for each b in B do

Fittmp = f (~x,b), i.e., evaluate~x using algorithm b.

5: if Fittmp < Fitbest then

Fitbest = Fittmp

end if

end for

Return Fitbest

10: end procedure

The process for calculating the fitness of an individual in population B is similar and is

described in the next listing.

Population B

Similarly, the algorithm to calculate the fitness of an individual b in population B is de-

scribed in Algorithm 12.

Algorithm 12 Evaluation of the fitness of an individual in population B
procedure FITNESS EVALUATION IN POPULATION B(b: Individual of B, A: Population
A)

Fitbest = 0
for all a in A do

Fittmp = f (a,b), i.e., evaluate algorithm b using individual a.
5: if Fittmp > Fitbest then

Fitbest = Fittmp
end if

end for
Return Fitbest

10: end procedure

The two previously defined algorithms calculate the fitness of one individual of population

A or B by iterating over all individuals of the opposite population. It is possible to sacrifice

accuracy to gain performance by sub-sampling the opposite population instead of iterating over

every point of it. This approach, however, was not tested in this work.

With the evaluation for every point, the selection procedure is simple. For population B one
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needs only to remove the worst individuals of the population with regard to the fitness function,

i.e., the clustering algorithms with the highest SSE. Similarly, for population A one needs only

to remove the worst individuals of the population with regard to the fitness function, i.e., the

selected points with the lowest SSE.

4.2.4 Generation of Population

Once the fitness calculation of the individuals of the population A and B is defined, one

can use use special operations to create new individuals, considering the fitness as a selection

parameter and evolving both populations over time. The generation of the new individuals of

population A follows the logic of the algorithm presented in Algorithm 13.

Algorithm 13 Generation of new individuals of population A
procedure GENERATING NEW INDIVIDUALS OF POPULATION A(A: Population A)

Execute mutation on population A
Execute crossover on population A

end procedure

The generation of individuals in population B is simpler than of population A, and follows

the algorithm presented in Algorithm 14.

Algorithm 14 Generation of new individuals of population B
procedure GENERATING NEW INDIVIDUALS OF POPULATION B(B: Population B, SBpop:
The number of individuals of population B)

Selects new clustering algorithm from the algorithm pool for executing the co-evolution.
end procedure

Next, we define the operations used for both populations.

Mutation of individuals in population A

Mutation of individuals in population A is similar to the mutation operation of the Genetic

Algorithm, a number of Nmut individuals of the population A (of selected points) is picked at

random and a selected point of the individual is randomly picked as a pivot. After that, another

point is picked from the non-selected set of points. If the replacing procedure yields a smaller

SSE than the solution that generated it, the mutation procedure is repeated. The algorithm tries

to find a mutated individual that minimizes the SSE until a given budget condition is reached.

It is important to notice that there may not be duplicated values of a given point after the

mutation operation. The new individual is appended to the end of the current population. The

algorithm in Algorithm 15 explains the mutation procedure.
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Algorithm 15 Mutation of an individual x of population A

procedure MUTATION PROCEDURE(~A: Population A)
for each i in [1..Nmut ] do

for each j in [1..ntries] do
Randomly pick a selected point of A, apivot , to be exchanged

5: Randomly pick a non-selected point of A, anon, to exchange apivot
Take S, as the cluster solution (set of centroids) that defines the fitness of indi-

vidual a
Find Spivot and Snon, the closest centroids from apivot and anon, respectively
if The distance between Spivot and apivot is smaller than the distance Snon and

anon then
Take the new individual formed by substituting apivot with anon, replacing

the old individual by the new individual.
10: end if

end for
end for

end procedure

The mutation algorithm tries to find hard points to cluster by randomly exchanging selected

points with non-selected points.

Crossover of individuals in population A

Crossover is implemented by randomly choosing two individuals using roulette wheel se-

lection and building one new individual by randomly picking the attributes of both individuals,

always verifying if the resulting individual is valid, i.e., has no selected point appearing twice.

The algorithm in Algorithm 16 explains this procedure.
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Algorithm 16 Crossover individuals of population A

procedure CROSSOVER PROCEDURE(~A: Population A, individual size s)
for each i in [1..nncross] do

Randomly pick two different individuals, ~a1 and ~a2, of population A, proportional to
their fitness, i.e., the greater the SSE value, the more probable the selection (roulette wheel
selection)

across = {}
5: while |across|< s do

r = rand(0,1)
if r > 0.5 then

Randomly pick a selected point p from individual ~a1
else

10: Randomly pick a selected point p from individual ~a2
end if
if p /∈ across then

across = across∪{p}
end if

15: end while
Return across

end for
end procedure

Selection of individuals in population A

After mutation and crossover, the selection of individuals is performed. This selection is

merely the elimination of the most unfit individuals so that the population returns to its original

size.

To determine the fitness of the selected points, the algorithm 11 must be executed for the

newly generated individuals. The individuals with smallest SSE must be replaced.

Replacement of algorithms in population B

In every iteration of the co-evolutionary algorithm on population B, the Nun f it most unfit

clustering algorithms are replaced by Nun f it clustering algorithms of the algorithm pool, se-

lected at random. This approach has two important characteristics: it automatically chooses the

more efficient algorithms to the data and avoids local minima by always trying new solutions

for the existent points. Once a new algorithm is selected, it randomly chooses one individ-

ual of population A, proportional to its fitness for finding a solution for the reduced clustering

problem. Once a solution for the reduced clustering problem is found, it replaces the old clus-

tering algorithm if its SSE is smaller than one of the current clustering algorithm present in the

population.
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4.3 Classical clustering algorithms used for population B

As previously stated, population B consists in a pool of classical clustering algorithm used

to solve a sub problem of the original, large, clustering task. In the following Section, the

algorithms used for generating the pool are presented. In theory, any clustering algorithm could

be used as the co-clustering engine, this set was selected for being widely spread in the literature,

having attested performance in small data sets and fast response times.

4.3.1 K-Means Clustering Algorithm

The k-means clustering algorithm or just ”k-means“, was introduced in the seminal work

of (MACQUEEN, 1967; STEINHAUS, 1956) and has persisted until today as one of the most

used clustering algorithms.

The canonical k-means algorithm first selects points of the data set randomly to create k

centroids and iteratively moves the initial set of centroids to a better cluster selection. Algo-

rithm 17 presents the algorithm.

Algorithm 17 The k-means algorithm
procedure k-MEANS(Data set D, The number of Clusters k, The maximum number of
iterations itmax)

Randomly select k points for acting as the initial centroids
Assign each point to its closest centroid
i = 0

5: while a point of the data set changed clusters and i < itmax do
Recalculate the centroids as the mean point of all points of the cluster
Recalculate the closest centroid of every point

end while
end procedure

Theoretically the k-means algorithm is known to converge in a finite number of iterations,

but in some cases it may take many iterations and in practice may not even converge at all,

due to rounding errors. Thus, it is important to fix a maximum number of iterations itmax for

the algorithm. In this work we set the maximum number of iterations for the k-means method

to 100 (itmax = 100). In the tests performed, the algorithm took less than itmax iterations to

converge in every occasion.
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4.3.2 Spectral Algorithm

The Spectral Clustering Algorithm (NG; JORDAN; WEISS, 2001) is a widely spread clus-

tering algorithm for small-sized data sets. It works by taking a similarity distance matrix Ln×n

of all n points and calculating the eigenvectors and eigenvalues of Md , stacking them, creating

a new matrix and performing the clustering in this new data set. The algorithm builds matrix A

using the following steps.

1. Ai, j = exp(−||si− s j||2/2σ2) if i 6= j, and Aii = 0.

2. Define D as the diagonal matrix whose (i, i) element is the sum of A’s i-th row and con-

struct the matrix L = D−1/2AD−1/2.

3. Find the k largest eigenvalues of L and the respective eigenvectors x1,x2, ...xk, forming a

matrix Xn×k by stacking the k eigenvalues in columns.

4. Form a matrix Y of X by normalizing each row of X to have unit length.

5. Run a classical clustering algorithm in Y (e.g. k-means).

6. Assign each point of the resulting clustering to an original point of data set D.

According to (NG; JORDAN; WEISS, 2001), this algorithms works quite well in small

data sets with great dissimilarity between points. Also, there exists a quality guarantee for the

resulting clusters.

4.3.3 CURE and CLARANS Algorithm

These algorithms were used for both constructing the clustering algorithm pool B and as a

stand-alone benchmark algorithm for large data sets. Refer to the previous Chapter for more

detail.
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Chapter 5
Clustering Results

In this Chapter, the results of the experimental runs for all data sets are presented and

discussed. These data sets vary in size and complexity, from small data sets for validating

the results to large data sets for testing the actual performance of the algorithms in difficult

scenarios. Both solution quality and running time were measured, the solution quality was

compared using statistical tests.

Before presenting the results, the benchmark data sets are presented, with the original

source and some considerations. Also, the parameters used by the algorithms are presented.

5.1 Benchmark data sets

To test the clustering algorithms, nine benchmark data sets were used, among those, eight

were extracted from the literature and one exclusive data set was built from register information

of consumers of the local energy distributer company.

Table 5.1 presents the details of the chosen benchmark data sets used in this work.

When available, the number of classes of the data set is used. It is worth noticing that the

classes of the data may not represent a clear spatial separation of the data. I.e., there may be

samples in the same class but in different regions of the attribute space. In this case, the number

of classes would not reflect the correct number of clusters. Upon examination, the used data

sets with available classes does have a spatial distribution that would be properly organized in

clusters. The X2D2K and X8D5K data sets were created for the very reason of verifying the

performance of methods for clustering spatial data sets. Upon inspection, the pen digits data set

showed to have a spatial division of the existent classes.



5.2 Setup of algorithms 66

Base name Size Dimensions Clusters (k) Original source
X2D2K 1000 2 2 (STREHL; GHOSH, 2003)
X8D5K 1000 8 8 (STREHL; GHOSH, 2003)

BRD14051 14051 2 N/A (REINELT, 1991)
Pen Digits 7494 16 10 (FRANK; ASUNCION, 2010)
PLA33810 33810 2 N/A (REINELT, 1991)

Shuttle 43500 9 N/A (FRANK; ASUNCION, 2010)
PLA85900 85900 2 N/A (REINELT, 1991)
ESCELSA 324515 2 N/A N/A

MiniBooNE_PID 65032 50 N/A (FRANK; ASUNCION, 2010)

Table 5.1: When the literature does not provide a value for the number of clusters, the range of
values between 2 and 29 is used for testing. Only the trainning sets of the data sets were used
in the algorithm’s evaluation

Each algorithm was run 10 times for each test to measure the median and variance of their

SSE value (when there is some stochastic behavior in the algorithm) and run-times. Some

tests could not be run due to the impossibility of setting up important algorithm parameters or

because of the excessive running times.

To verify if there is a statistical difference between the COCLU method and the other algo-

rithms when the value of k varies, the non-paired Wilcoxon signed-ranks test was used for each

value of k. This test is indicated for comparing the performance of two algorithm in the same

data set (DEMSAR, 2006) with independent runs. This is a non-parametric test, no assumption

is made on the underlying distribution of the data, serving as an alternative to the paired t-test.

After the execution of the Wilcoxon test, the p-values for all values of k were corrected using

the Holm method, for allowing the comparison between runs of the same experiment.

When the value of k is fixed, the Kruskall-Wallis test is used for detecting if the algorithms

are different. If any difference is detected, the Wilcoxon test is used to find which algorithm(s)

differs from the COCLU algorithm, finally, the p-values are corrected using the Holm method,

for allowing direct comparison between the COCLU algorithm and the other methods. If this

comparison were not applied it would be not possible to ascertain that the COCLU algorithm is

better than other methods.

5.2 Setup of algorithms

The next Tables present the default set of parameter values used for all data sets, unless

stated otherwise in their particular Sections. These values are the recommended set up found in

the literature.
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5.2.1 CLARANS

The parameter maxNeighbors regulates how many times the CLARANS algorithm will try

to generate random solutions. It is the most sensitive parameter with respect to processing time

and solution quality. The seminal paper of CLARANS suggests using the following expression

for configuring this parameter:

maxNeighbor = k ∗ (|D|− k)∗0.0125 (5.1)

This expression regulates the parameter so that the more difficult the problem (the bigger

the values of k and |D|) the more tries the algorithm has for solving the problem.

The parameter numLocals controls how many worst solutions the algorithm will tolerate

finding before restarting the searching procedure. The literature suggests using numLocals = 2.

5.2.2 BIRCH

The BIRCH algorithm’s most important parameter is also the most sensitive and hard to

estimate, since it has direct relation to the nature of the data set. Several experiments were

performed to find the set of parameters described in Table /5.2. To find these set of values, first

the smallest pairwise distance between points is found. The algorithm is run using this distance

multiplied by a factor that varied linearly until the best clustering result was found.

Data set Closeness and com-
pactness parameter

X2D2K Smallest Distance
X8D5K Smallest Distance

BRD14051 9000
Pen Digits Smallest Distance
PLA33810 4∗107

Shuttle 86
PLA85900 700000
ESCELSA 1∗107

MiniBooNE 9∗1028

Table 5.2: Parameters of the BIRCH algorithm for all data sets

5.2.3 CURE

The CURE algorithm has only one relevant parameter, the size of the representative set.

According to the literature, a good value for this parameter is 10. According to preliminary
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tests, this value resulted in a good compromise between time and performance in all data sets.

5.2.4 DBSCAN

The similarity factor controls indirectly how many clusters the algorithm will form. This

value had to be indirectly set up with the local search algorithm 8.

The value for MinPts was set up based on suggestions taken from the literature and experi-

mentation on the available data sets. A good value for this parameter was found to be 2.

5.2.5 COCLU

All test runs used the following set of parameters. These parameters were estimated in

preliminary runs of the algorithm on the previously presented data sets. This set was considered

good for all available algorithm runs.

Parameter Value Description
MaxCycles 50 Number of outer iterations of the

min-max algorithm ( Algorithm 9 )
MaxGensA 10 Number of iterations over the pop-

ulation A while population B is
frozen. (Algorithm 9)

MaxGenB 1 Number of iterations over the pop-
ulation B while population A is
frozen. (Algorithm 9)

SApop 4 Size of the population A of selected
points (Algorithm 10)

ncross 1 Number of crossovers on each it-
eration of the inner loop (Algo-
rithm 16)

nmut 1 Number of mutations on each it-
eration of the inner loop (Algo-
rithm 15)

s 0.05∗ |D| The number of points that need to
be considered by a given individual
of the population (Algorithm 10)

SBpop 1 Size of the population B of cluster-
ing algorithms Algorithm 14)

Table 5.3: Parameters of the COCLU algorithm for all data sets
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5.2.6 Testing Environment

All tests were run on a AMD Athlon(tm) 64 X2 Dual Core Processor 4000+ with 1 Gb of

available physical memory. The algorithms were implemented using ANSI C++ in a UNIX

environment.

5.3 Results

In the following Subsections, the results of algorithms for all data sets are presented with a

statistical test for verifying the results.

5.3.1 Results for X2D2K Base

Next, the results for the data set X2D2K for all five algorithms with k = 2 are presented.

The first table presents the SSE of the tested algorithms while the second table presents their

running times.

Table 5.4: Sum of squared errors (SSE) of all algorithms for base X2D2K, k = 2

Method Mean SSE Best SSE Worst SSE Median SSE SSE Std. Dev.

CLARANS 122.78 122.60 123.19 122.72 0.19

DBSCAN 210.69 210.69 210.69 210.69 N/A

BIRCH 124.02 124.02 124.02 124.02 0.00

CURE 226.03 226.03 226.03 226.03 N/A

COCLU 122.90 122.59 123.58 122.78 0.34

The Table 5.4 shows the results of all algorithms in a relatively small data set for validat-

ing their behaviour. In this benchmark all algorithms, with the exception of the CURE and

DBSCAN algorithms, managed to successfully find a good set of centroids for the clustering

problem. The CLARANS algorithms achieved the best results in this data set with the proposed

COCLU algorithm achieving similar SSE results.

In order to perform the statistical analysis, the Kruskall test is executed to detect differences

in the algorithms. This test reported a p-value of 1.837∗10−07, clearly pointing to a significant

difference between algorithms.

Next, we need to verify if the CLARANS algorithm is in fact better than the COCLU

algorithm in this data set, the adjusted Wilcoxon signed-rank test was performed on all ten runs
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of the algorithm and the Holm adjustment was executed. The null hypothesis H0 is that the

means of the algorithm’s SSE are the same and the alternative hypothesis H1 is that they are

different. The test resulted in a p-value of 0.4492 (confidence interval of 95%), therefore, not

rejecting the null hypothesis. A p-value of 0.05 would be enough to reject the null hypothesis.

When repeating the statistical test with the BIRCH algorithm, the found p-value was 0.0002

(confidence interval of 95%), being possible, therefore to reject the null hypothesis and state that

the COCLU algorithm is better than the BIRCH algorithm for this data set. The same is also

true for the other two algorithms.

Table 5.5: Running times of all algorithms on base X2D2K

Method Mean

Time (ms)

Best

Time (ms)

Worst

Time (ms)

Median

Time (ms)

Time Std.

Dev. (ms)

CLARANS 28.0 20.0 40.0 20.0 9.80

DBSCAN 144.0 140.0 150.0 140.0 4.90

BIRCH 60.0 60.0 60.0 60.0 0.00

CURE 633.3 620.0 650.0 630.0 8.16

COCLU 537.8 390.0 720.0 490.0 117.36

Table 5.5 shows that the CLARANS algorithm also has the best runtime result. It manages

to be the best algorithm in both result quality and running time. It is also worth noticing how the

running time of the COCLU algorithm is worse than the running time of the CLARANS algo-

rithm in this data set. It is clear that in this experiment, the CLARANS algorithm outperforms

every other algorithm tested.

5.3.2 Results for X8D5K Base

Next, the results for the data set X8D5K for all five algorithms with k = 8 are presented.

The table 5.6 presents the SSE of the tested algorithms while the table 5.7 presents their running

times.
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Table 5.6: Sum of squared errors (SSE) of all algorithms for base X8D5K, k = 8

Method Mean SSE Best SSE Worst SSE Median SSE SSE Std. Dev.

CLARANS 266.78 265.24 270.79 266.59 1.44

DBSCAN 346.02 346.02 346.02 346.02 N/A

BIRCH 291.86 266.30 370.68 270.10 42.00

CURE 276.37 276.37 276.37 276.37 N/A

COCLU 267.46 266.49 268.49 267.61 0.58

The table 5.6 shows the results of all algorithms in another relatively small data set for the

purpose of validating their behaviour. It was observed that, once again, all algorithms with the

exception of the DBSCAN algorithm managed to successfully find a good set of centroids for

the clustering problem. The CLARANS algorithms achieved, again, the best results in this data

set with the proposed COCLU algorithm in the second place, achieving similar SSE results.

In order to perform the statistical analysis, the Kruskall test is executed to detect differences

in the algorithms. This test reported a p-value of 1.197∗10−05, clearly pointing to a significant

difference between algorithms.

Next, we need to verify if the CLARANS algorithm is in fact better than the COCLU

algorithm in this data set, the adjusted Wilcoxon signed-rank test was performed on all ten

runs of the algorithm and the Holm adjustment was executed. The null hypothesis H0 is that

the means of the algorithm’s SSE are the same and the alternative hypothesis H1 is that they

are different. The test resulted in a p-value of 0.019 (confidence interval of 95%), therefore,

rejecting the null hypothesis, i.e., the CLARANS algorithm is better than the COCLU algorithm

in this data set.

When repeating the statistical test with the CURE algorithm, the found p-value was 0.00012

(confidence interval of 95%), being possible, therefore, to reject the null hypothesis and state

that the COCLU algorithm is better than the CURE algorithm for this data set. The same is also

true for the other two algorithms.
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Table 5.7: Running times of all algorithms on base X8D5K

Method Mean

Time (ms)

Best

Time (ms)

Worst

Time (ms)

Median

Time (ms)

Time Std.

Dev. (ms)

CLARANS 153.00 140.0 200.0 150.0 16.16

DBSCAN 306.00 300.0 320.0 305.0 6.63

BIRCH 80.00 80.0 80.0 80.0 0.00

CURE 1157.78 1130.0 1230.0 1150.0 28.59

COCLU 2207.78 1760.0 2830.0 2160.0 380.49

Is this experiment, it is clear from Table 5.7 that the BIRCH algorithm got the best running

time, but only the third SSE result. In this experiment, the COCLU algorithm got the worst

running time. Since both X2D2K and X8D5K data sets contain the same amount of points, only

differing in the dimension and the number of clusters k, it appears that the COCLU algorithm

is more sensitive to the dimensionality scaling of the data than the other algorithms.

5.3.3 Results for BRD14051 Base

This data set does not contain the number of clusters that must be formed, thus, the set of

values in the interval between 2 and 29 was tested to assess both result quality and running time.

The results are presented in the following Figures.
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Figure 5.1: The SSE of all tested algorithms

From Figure 5.1 it is clear that both COCLU and CLARANS algorithms achieved the best

SSE values for this data set, with very similar results. The BIRCH algorithm was the third best

algorithm, achieving very close results. The DBSCAN algorithm could not run in great part of

this data set: the algorithm failed to find the proper value of k when it was larger than 11. The

reason for this is that the local search algorithm could not find good values for the similarity

factor parameter that resulted on the desired number of clusters.

To examine the statistical difference between CLARANS and COCLU algorithms, the ad-

justed Wilcoxon test was performed independently for every k. The test could not find a signifi-

cant statistical difference between the two algorithms, excluding k = 6, which had a p− value

of 0.04, pointing to a better performance of the CLARANS algorithm (confidence interval of

95%).

However, when testing the COCLU algorithm against the third best algorithm, the BIRCH

algorithm, significant statistical difference was found for every k, excluding k = 3, (p-value <

0.05 and confidence interval of 95%). Also according to the Wilcoxon test, it is safe to say that

the COCLU algorithm is better than the other two clustering algorithms in this data set.
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Figure 5.2: Running times of all algorithms on base BRD14051

Figure 5.2 shows two different asymptotic behaviours. The first behaviour comes from

algorithms that are very sensitive to the parameter k (COCLU, and CLARANS). The three

others are not so much influenced by the increase of the number of clusters. Also, it is clear that

even though the COCLU algorithm presents a linear increase in run-time, it is a very steep one

compared to the other algorithms. Also, the time variance of the COCLU algorithm is much

greater when compared to the other algorithms.

5.3.4 Results for Pen Digits Base

Next, the results for the data set Pen Digits for all five algorithms with k = 10 are presented.

The table 5.8 presents the SSE of the tested algorithms while table 5.9 presents their running

times.
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Table 5.8: Sum of squared errors (SSE) of all algorithms for base Pen Digits, k = 10

Method Mean SSE Best SSE Worst SSE Median SSE SSE Std. Dev.

CLARANS 487542.2 480133.0 497726.0 488637.0 5106.2

DBSCAN 859522.0 859522.0 859522.0 859522.0 N/A

BIRCH 482763.0 475349.0 491656.0 480653.0 5557.0

CURE 821756.1 821756.1 821756.1 821756.1 N/A

COCLU 484142.3 479838.0 487940.0 484386.0 2465.8

The Table 5.8 shows the SSE results of the tested algorithms for the Pen Digits data set.

The best algorithm for this data set was the BIRCH algorithm, with the COCLU algorithm and

the CLARANS algorithm at the second and third places. In this test, however, the worst result

of the BIRCH algorithm was very poor, yielding a high variance. The COCLU algorithm, for

instance, had a much better worst case.

In order to perform the statistical analysis, the Kruskall test is executed to detect differences

in the algorithms. This test reported a p-value of 3.357∗10−05, clearly pointing to a significant

difference between algorithms.

According to the adjusted Wilcoxon test it is possible to state that the BIRCH algorithm is

statistically better than the COCLU algorithm with a p-value of 0.00002 (confidence interval of

95%) for the H0 hypothesis that both algorithms are the same. It is also possible to state that the

COCLU algorithm is statistically better than CLARANS with the same p-value and confidence

interval. It also follows that the COCLU algorithm is better than other two algorithms, CURE

and DBSCAN.

Table 5.9: Running times of all algorithms on base Pen Digits

Method Mean

Time (ms)

Best

Time (ms)

Worst

Time (ms)

Median

Time (ms)

Time Std.

Dev. (ms)

CLARANS 16716.0 15770.0 17130.0 16925.0 437.86

DBSCAN 62981.0 60570.0 65100.0 63115.0 1526.42

BIRCH 530058.9 529870.0 530220.0 530100.0 115.18

CURE 95275.6 94820.0 96030.0 95020.0 423.82

COCLU 63247.8 48670.0 70560.0 65260.0 6835.97

Table 5.9 shows the running times of the tested algorithms from this table. It is clear that

the CLARANS algorithm outperformed every other tested algorithm on that regard. Also, the
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best algorithm in the SSE sense (BIRCH) had the second best time. This is evidence that this

algorithm works well in this data set.

5.3.5 Results for PLA33810 Base

This data set also does not contain the number of clusters that must be formed, thus, the set

of values in the interval between 2 and 29 was tested to assess both result quality and running

time. The results are presented in the following Figures.
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Figure 5.3: The SSE of all tested algorithms, with the exception of the DBSCAN algorithm on
data set PLA33810

This experiment had similar results to those obtained on the test of BRD14051 data set.

From Figure 5.3 it is clear that both COCLU and CLARANS algorithms achieved the best SSE

values, with very similar results. The BIRCH algorithm was the third best algorithm, achieving

close results from the two best algorithms. Once again, the CURE algorithm had the fourth

best results, with an erratic behaviour, probably due to poor summarization of the data. The

DBSCAN algorithm could not run at all on this data set. The algorithm failed to find the proper

value for the similarity factor, generating bad values of k in every occasion.
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According to the adjusted Wilcoxon test, it is not possible to ascertain that the COCLU

algorithm is better than the CLARANS algorithm for any values of k that were tested (p-value

< 0.05 and confidence level of 95%).

However, It was possible to ascertain (p-value < 0.05 and confidence level of 95%) that

both the CLARANS and COCLU algorithms are better than the other two algorithms for every

value of k.
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Figure 5.4: Running times of all algorithms on data set PLA33810

The previously observed phenomenon is repeated here. Once again, the BIRCH and CURE

algorithms had a more scalable processing time when the number of clusters increases. It is

also important to notice that the COCLU algorithm does not deal well with the increase of the

value of k. When k = 15, or greater, its running time is the worst of all algorithms.

5.3.6 Results for Shuttle Base

This data set also does not contain the number of clusters that must be formed, thus, the set

of values in the interval between 2 and 29 was tested to assess both result quality and running
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time. The results are presented in the following Figures.
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Figure 5.5: The SSE of all tested algorithms, with the exception of the DBSCAN algorithm, on
data set Shuttle

From Figure 5.5 it is clear that the CURE algorithm could not deal well with this data set,

the result was so poor that it is hard to analyse the other algorithms. For that reason, Figure 5.6

presents the results without the CURE algorithm.

According to the adjusted Wilcoxon test, there is a significant difference between algorithms

the most values of k tested. In the interval between 2 and 5, the CLARANS algorithm had a

better SSE performance than all the others. While in the interval between 6 and 29 the CO-

CLU algorithm had a better performance (p-value < 0.05, confidence interval of 95%). The

only exception was when k = 22, because it was not possible to detect any difference between

algorithms.

The statistical tests also show that the other algorithms results are worse than the COCLU

and CLARANS results.
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Figure 5.6: The SSE of all tested algorithms, with the exception of the DBSCAN and CURE
algorithms (for a better visualization) on data set Shuttle

Figure 5.6 presents the SSE results again without the DBSCAN algorithm. From these

results it is clear that the COCLU algorithm had a better clustering result the most part of the

experiment, only being slightly worse in the beginning of the experiments.
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Figure 5.7: Running times of all algorithms, with the exception of the DBSCAN algorithm, on
data set Shuttle

As far as time is concerned, this experiment presented a similar behaviour from the previous

ones. Once again, the BIRCH and CURE algorithms had a more scalable processing time when

the number of clusters increases. But this time, the COCLU algorithm had a better running

time than the CURE algorithm for most part of the experiment. In the previous experiment,

the COCLU algorithm’s running time surpassed the CURE running time when k = 15 , in this

experiment it took much longer, only with k = 29.

5.3.7 Results for PLA85900 Base

This data set also does not contain the number of clusters that must be formed, thus, the set

of values in the interval between 2 and 29 was tested to assess both result quality and running

time. The results are presented in the Figures 5.8 and 5.9. Once again, the DBSCAN algorithm

could not be run in any of the test suits for this data set. It was not possible to find a proper

value for the similarity factor that generated the desired amount of clusters.
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Figure 5.8: The SSE of all tested algorithms, with the exception of the DBSCAN algorithm on
data set PLA85900

This result was similar to the ones found for the PLA33810 data set. This is natural due to

the similar nature of the data sets (spatial points in a 2D space).

The CLARANS and COCLU algorithm achieved similar clustering results with slight ad-

vantage to the CLARANS method. Once again the BIRCH and CURE algorithms were the third

and fourth best algorithms. The adjusted Wilcoxon test could not find any difference between

the CLARANS and COCLU algorithm for any value of k (p-value < 0.05 and confidence inter-

val of 95%). The test was able to detect a significant difference between the COCLU algorithm

and the other two algorithms for every value of k.
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Figure 5.9: Running times of all algorithms on data set PLA85900

Also, the behaviour of running times of the algorithms was similar to those observed on

the results of data set PLA33810, but this time the COCLU algorithm had a better performance

than the CURE algorithm for every value of k. Its asymptotic behaviour, however, is the worst

of all tested algorithms, so the expected running time of the COCLU algorithm will get higher

as k increases.

5.3.8 Results for ESCELSA Base

The ESCELSA base is an unique test case constructed with register data of the electricity

consumers of the local distributer energy company. This base consists of circa 100000 instances.

They represent compact groups of clients with information of their approximate Geo-referential

coordinates.

This data set also does not contain the number of clusters that must be formed, thus, the set

of values in the interval between 2 and 29 was tested to assess both result quality and running

time. The results are presented in the following Figures. Once again, the DBSCAN algorithm
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could not be run in any of the test suits for this data set. It was not possible to find a proper

value for the similarity factor that generated the desired amount of clusters.
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Figure 5.10: The SSE of all tested algorithms, with the exception of the DBSCAN algorithm,
on data set ESCELSA

The Figure 5.10 displays the experiments performed on the ESCELSA database. There are

only two data points for the CURE algorithm because it took an excessive amount of time to

conclude executions. The other algorithms were also preempted due to the same reason. From

the available data it is clear that they did not get good results for this data set.
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Figure 5.11: The SSE of all tested algorithms, with the exception of the DBSCAN and CURE
algorithms (for a better visualization) on data set Shuttle

Figure 5.11 displays the data without the interference of the CURE algorithm. From this

graphic it is clear that, once again, the algorithms CLARANS and COCLU had the best results.

Also, the BIRCH algorithm had worse, but well-behaved results.

The adjusted Wilcoxon test found no difference between the CLARANS and COCLU algo-

rithms when k is 5 or smaller. There is a significant difference between algorithms when k is

bigger than 5, in this interval the COCLU algorithm is statistically better than the CLARANS

algorithm (p-value < 0.05 and confidence interval of 95%).

Also, both algorithms are better than the BIRCH algorithm for every value of k (p-value <

0.05 and confidence interval of 95%).
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Figure 5.12: Running times of all algorithms, with the exception of the DBSCAN algorithm,
on data set ESCELSA

Figure 5.12 displays the running times for the tested algorithms. From this Figure it is clear

that the CURE algorithm had a much worse running time. In Figure 5.13, the data is displayed

again with the exception of the CURE running time, for a better visualization.
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Figure 5.13: Running times of all algorithms, with the exception of the DBSCAN algorithm
and CURE algorithms (for a better visualization), on data set ESCELSA

It is possible to observe in Figure 5.13 that the runtimes of the CLARANS and COCLU

algorithm are very similar, different from the other data sets. It is also possible to notice the

almost negligible time the BIRCH algorithm took to run, compared to the running times of the

other algorithms, its performance regarding solution quality, however, was poor.

5.3.9 Results for MiniBooNE Base

In this data set the only algorithms that were capable of successfully returning valid results

in reasonable running times were the CLARANS and COCLU algorithms.
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Figure 5.14: The SSE CLARANS and COCLU, on data set MiniBooNE

The results observed on Figure 5.14 are quite different from those observed in the previous

tests. The results for the CLARANS algorithm were quite erratic and a straight line was ob-

served for the COCLU algorithm. This is probably due to the difficulty of the problem. The

CLARANS algorithm did not behaved as expected in this particular data base.

The adjusted Wilcoxon test could find differences in algorithms when k = 2, k = 3, k = 7,

k = 10, k = 17 and k = 19 (p-value < 0.05 and confidence interval of 95%).
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Figure 5.15: Running times of CLARANS and COCLU algorithms, on data set MiniBooNE

The results for the running time observed in Figure 5.15, however, are coherent with the

observed run-times of the previous data sets.



89

Chapter 6
Conclusion and Future Work

This work proposes a new approach for dealing with the problem of clustering large data

sets of continuous points in metric spaces. The objective of the clustering task is to find groups

on data that minimize the Sum of Squared Errors between instances of a group and their cen-

troids.

Four classical algorithms (BIRCH, CLARANS, CURE, DBSCAN) were presented with

their background, pseudo-code, analysis of the necessary data structures, advantages and disad-

vantages.

A novel clustering algorithm for large data sets, called COCLU, was developed. The idea

is to apply classical algorithms that perform well in small data sets on a subset of the original

data. The problem of choosing a good, representative subset of points is solved by applying a

co-evolutive min-max approach for the problem of selecting representative points.

The co-evolutive competitive min-max algorithm is commonly used for solving problems

with two or more coupled and opposed objective functions. This approach suits well the prob-

lem of finding hard set of points to cluster, given some pre-configured algorithms. The adapta-

tion was not hard to implement.

Two populations were created, one of clustering algorithms and another of selected points.

The algorithm works by evolving both populations at the same time in a competitive manner.

The expected behaviour is that both populations converge to a good set of representative points

and clustering algorithms.
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6.1 Experiments

From the experiments it is clear that no algorithm had a overall better result for every data

set considering both response time and result quality. However, for the most part of the data sets

tested, the CLARANS and COCLU algorithms had very competitive running times and were

always among the best algorithms in regard to solution quality.

It is important to notice that the relative running times of the COCLU algorithm compared

to the CLARANS algorithm decreased as the size of the data sets increased. I.e., the bigger the

data set, the less advantageous is to use the CLARANS algorithm. It is noticeable that the time

registered for both CLARANS and COCLU algorithm (Table 5.4) were very different from one

another. The COCLU algorithm had longer running times in the first data sets than in the last

ones. In the larger data sets both running times and solution quality had very similar results (

Figure 5.12 and Figure 5.10).

The conclusion is that the COCLU algorithm is equivalent to the CLARANS algorithm

in most of data sets and it has a better response as the data set increases. The CLARANS

algorithm seems to not handle well data with an increased number of dimensions (Table 5.5

and Figure 5.14 present this phenomena). When the data set and dimensions are small, the

algorithm performs very well, however, an erratic behaviour is observed when they increase.

From the tests the premise that no single clustering algorithm is better for every base is

verified. Thus, an algorithm capable of unifying the decisions of many different heuristics

is relevant. The COCLU algorithm successfully fills the gap between clustering techniques

and data sets by using co-evolution for selecting both points and algorithms to consider in the

overall clustering process. This automatic selecting yields a robust algorithm for clustering

many different types of data sets, given that the adequate clustering algorithm is present in the

population pool.

6.2 Future Work

The use of the min-max approach for solving complex problems often leads to algorithms

with poor scalability capabilities. The constant need of evaluating an individual of one popu-

lation against all individuals of the other results in high processing times. Two solutions are

available for mitigating this problem.

The first solution is to use parallel algorithms for performing the fitness calculation. Fixing

one individual of population A, all the fitness calculations on the opposite population may be
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done at the same time, reducing the runtime of the algorithm greatly. The second approach is

to change the algorithm of fitness calculation in the following way: given an individual ~a of

population A, instead of iterating over all individuals of population B, randomly choose a fixed

number of individuals for calculating the fitness of individual~a.

With this enhancement, more tests can be executed with even bigger data sets with different

characteristics to verify if the observed behaviour is maintained.

More investigation may be done on selecting clustering algorithms for the core of the CO-

CLU algorithm, changing the current set of algorithms (k-means, CLARANS and Spectral clus-

tering) may improve the final result of the algorithm.

It is also possible to develop a way for iteratively changing crucial parameters of the CO-

CLU algorithm based on the partial results of the co-evolution process. The compression factor,

for instance, is very important for the overall result. Fixing it for every data set possible will not

yield the best results.

It is also possible to use two other approaches for reducing the complexity of the COCLU

algorithm: analyze the features of the data set to eliminate redundant characteristics, and there-

fore reducing the complexity of the overall procedure, and use approximate k-NN queries for

finding the closest elements of a given point in space, also reducing the overall complexity.
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