Use este identificador para citar ou linkar para este item: http://repositorio.ufes.br/handle/10/10518
Registro completo de metadados
Campo DCValorIdioma
dc.contributor.advisorFernandes, Antonio Alberto Ribeiro-
dc.date.accessioned2018-12-20T13:19:49Z-
dc.date.available2018-12-20-
dc.date.available2018-12-20T13:19:49Z-
dc.identifier.urihttp://repositorio.ufes.br/handle/10/10518-
dc.publisherUniversidade Federal do Espírito Santopor
dc.subjectAlta pressão hidrostáticapor
dc.subjectSaccharomyces cerevisiaepor
dc.subjectMicroscopia de força atômicapor
dc.subjectHPLCpor
dc.subjectMassa celularpor
dc.subjectHigh pressure hydrostaticeng
dc.subjectAtomic force microscopyeng
dc.subjectCell masseng
dc.titleAlterações na parede celular e no metabolismo energético de Saccharomyces cerevisiae submetida à alta pressão hidrostáticapor
dc.typemasterThesiseng
dc.subject.udc61-
dcterms.abstractAs leveduras são um dos organismos mais importantes nos processos da biotecnologia industrial. Caracteristicas como, grande capacidade fermentativa e ser considerada um organismo geneticamente seguro (do inglês: “Generally recognized as safe” - GRAS), fizeram com que esse organismo fosse um dos primeiros a serem utilizados em grandes produções. Entre suas aplicações não estão apenas seus produtos gerados a partir de seu metabolismo, mas também sua célula em si, que movimenta um mercado que vai desde fermento biológico até pasta de levedura para consumo humano. Com isso entender não só o processo fermentativo, mas também o respiratório se fazem necessário. Os processos de produção em que as leveduras são empregadas expõem-nas a estresses abióticos de diferentes tipos, como a variação de temperatura, pH, salinidade e outros. A alta pressão hidrostática (HHP) é hoje uma metodologia importante no estudo de seus efeitos sobre as células de Saccharomyces cerevisiae, agindo como um modelo de estresse. O entendimento desse fenômeno sobre as células nos ajuda não só a compreender os processos de resposta ao estresse, mas também sua utilização como uma ferramenta importante na aplicação industrial. Neste trabalho foram empregadas técnicas de microscopia de força atômica, cromatografia liquida de alta eficiência (CLAE do inglês HPLC) em conjunto com dados de microarranjo para caracterizar os efeitos da alta pressão hidrostática sobre a parede celular de Saccharomyces cerevisiae e sobre seu metabolismo energético. Para a produção dos experimentos, células da linhagem BT0510 foram submetidas à alta pressão hidrostática (50 a 200 MPa) por 30 minutos e em seguida analisada por microscopia de força atômica e em outro experimento as células foram submetidas a pressão de 50MPa por 30 minutos e voltadas a agitação. Os resultados mostraram o aparecimento de faixas de resistências na parede celular em pressões de 100, 150 e 200 MPa, indicando possíveis pontos de fratura, o que acarreta em lesões que comprometem sua viabilidade. Nas pressões de 50MPa a dispersão da resistência da parede celular se assemelha ao controle, o que mostra que essa pressão é de caráter subletal, não interferindo de maneira tão expressiva na mortalidade celular. A resposta ao tratamento com 50 MPa foi então analisada a longo prazo por HPLC, com pontos de coleta em 1, 2, 3, 4 , 12, 36 e 60 horas após a aplicação da pressão. Os resultados mostram grande afinidade com os dados gerados por microarranjo, onde as células aumentam a velocidade de consumo da glicose na fa (1 a 12 horas) assim como maior produção de etanol. As células também mostraram uma maior eficiência na metabolização do etanol (fase respiratória) o que gerou um aumento da massa celular nas células tratadas com pressão. Com isso foi demonstrado que alta pressão hidrostática tem aplicação industrial em processos de aquisição de massa celular como na fabricação de fermento biológico, mostrando assim a capacidade biotecnológica da utilização deste mecanismo de estresse e gerando o depósito da patente “Processo para o aumento massa celular em leveduras utilizando altas pressões hidrostáticas”.por
dcterms.abstractYeasts are one of the most important organisms in the processes of industrial biotechnology. Its great fermentative capacity and considered as a genetically safe organism, made this organism one of the first to be domesticated by the human being. Among its applications are not only its products generated from the fermentation, but also its cell itself, which moves a market ranging from organic yeast to yeast paste for human consumption. Understanding not only the fermentative process, but also the respiratory process are necessary. The production processes in which the yeasts are employed expose them to abiotic stresses of different types, such as temperature variation, pH, salinity and others. High hydrostatic pressure is now an important methodology in the study of its effects on the cells of Saccharomyces cerevisiae, acting as a model of stress. The understanding of this phenomenon on cells has helped not only to understand the processes of response to stress, but also its use as an important tool in industrial application. Atomic force microscopy, high performance liquid chromatography (HPLC) and microarray data were used to characterize the effects of high hydrostatic pressure on the cell wall of Saccharomyces cerevisiae and its energy metabolism. For the production of the experiments, BT0510 cells were submitted to high hydrostatic pressure (50 to 200 MPa) for 30 minutes and then analyzed by atomic force microscopy and in another experiment the cells were subjected to a pressure of 50MPa for 30 minutes and facing to agitation. The results showed the appearance of resistance bands in the cell wall at pressures of 100, 150 and 200 MPa, indicating possible fracture points, which leads to lesions that compromise its viability. At pressures of 50MPa the variation of the resistance of the cell wall resembles the control, which shows that this pressure is of sublethal character, not interfering so expressively in the cellular mortality. The response to 50 MPa treatment was then analyzed in the long term by HPLC, with collection points at 1, 2, 3, 4, 12, 36 and 60 hours after application of pressure. The results show high affinity with microarray generated data, where the cells increase the rate of glucose consumption in the fermentative phase (1 to 12 hours) as well as higher ethanol production. The cells also showed a greater efficiency in the ethanol metabolism which generated an increase in the cell mass in the cells treated with pressure. It was demonstrated that high hydrostatic 6 pressure has industrial application in cellular mass acquisition processes as in the production of biological yeast, thus showing the biotechnological capacity of the use of this stress mechanism and generating the deposit of the patent "Process for the increase of cellular mass in yeasts using high hydrostatic pressures ".eng
dcterms.creatorCarneiro, Tárcio-
dcterms.formattexteng
dcterms.issued2018-02-20-
dcterms.languageporeng
dc.publisher.countryBRpor
dc.publisher.programPrograma de Pós-Graduação em Biotecnologiapor
dc.publisher.initialsUFESpor
dc.subject.cnpqBiotecnologiapor
dc.publisher.courseMestrado em Biotecnologiapor
dc.contributor.refereeSantos, Alexandre Martins Costa-
dc.contributor.refereeZingali, Russolina Benedeta-
dc.contributor.advisor-coFernandes, Patrícia Machado Bueno-
Aparece nas coleções:PPGBIO - Dissertações de mestrado

Arquivos associados a este item:
Arquivo TamanhoFormato 
tese_12087_Dissertação_Tárcio Carneiro.pdf1.1 MBAdobe PDFVisualizar/Abrir


Os itens no repositório estão protegidos por copyright, com todos os direitos reservados, salvo quando é indicado o contrário.