Use este identificador para citar ou linkar para este item:
http://repositorio.ufes.br/handle/10/6474
Título: | Soluções positivas de um sistema elíptico semilinear nos casos crítico e supercrítico |
Autor(es): | Reis, Fernando Pereira Paulucio |
Orientador: | Xavier, Magda Soares |
Data do documento: | 30-Jun-2011 |
Editor: | Universidade Federal do Espírito Santo |
Citação: | REIS, Fernando Pereira Paulucio. Soluções positivas de um sistema elíptico semilinear nos casos crítico e supercrítico. 2011. 72 f. Dissertação (Mestrado em Matemática) - Programa de Pós-Graduação em Matemática, Universidade Federal do Espírito Santo, Vitória, 2011. |
Resumo: | Neste trabalho estudamos a existência de múltiplas soluções positivas de um sistema de equações elípticas semilineares envolvendo o expoente crítico de Sobolev em um domínio limitado do RN. Tais resultados foram demonstrados por Pigong Han. O método de sub-supersolução permite obter uma solução minimal quando um parâmetro " > 0 e suficientemente pequeno. No caso crítico, utilizando o método variacional, é possível garantir a existência de uma segunda solução positiva. No caso supercrítico, utilizando a identidade de Pohozaev, obtém-se que a existência de soluções esta condicionada a existência de soluções não negativas de dois problemas elípticos lineares In this work we study the existence of multiple positive solutions for a system of elliptic equations involving critical Sobolev exponent in a bounded domain in RN. These results were demonstrated by Pigong Han. The sub-supersolution method allows to obtain a minimal solution when a parameter " > 0 is small enough. In the critical case, by using the variational method, we may prove the existence of a second positive solution. In the supercritical case, by using the Pohozaev identity, we obtain that the existence of solutions is related to the existence of nonnegative solutions for two linear elliptic problems |
URI: | http://repositorio.ufes.br/handle/10/6474 |
Aparece nas coleções: | PPGMAT - Dissertações de mestrado |
Arquivos associados a este item:
Arquivo | Tamanho | Formato | |
---|---|---|---|
Fernando Reis.pdf | 440.01 kB | Adobe PDF | Visualizar/Abrir |
Os itens no repositório estão protegidos por copyright, com todos os direitos reservados, salvo quando é indicado o contrário.