Use este identificador para citar ou linkar para este item: http://repositorio.ufes.br/handle/10/9710
Título: Controle preditivo sintonizado via algoritmo genético aplicado em processos siderúrgicos
Autor(es): Almeida, Gustavo Maia de
Orientador: Salles, José Leandro Félix
Coorientador: Denti Filho, José
Palavras-chave: Otimização matemática
Data do documento: 4-Mar-2011
Editor: Universidade Federal do Espírito Santo
Resumo: O Algoritmo de Controle Preditivo Generalizado (GPC) é um método de projeto poderoso de controle amplamente aplicado em processos industriais. Entretanto, não há nenhuma maneira analítica de se ajustar os parâmetros do GPC, e o método mais usado atualmente é o de tentativa e erro, necessitando, assim, uma certa experiência do operador, além de demandar um certo tempo. Neste trabalho, o algoritmo genético (AG) é usado para fazer a sintonia desses parâmetros em plantas com diversas dinâmicas, tais como: instável, instável com fase não mínima, monovariável invariante e variante no tempo e multivariável irrestrito e restrito. Os resultados apresentados mostram a eficiência do algoritmo proposto em sintonizar quaisquer tipos de plantas lineares monovariáveis e multivariáveis de duas entradas e duas saídas.
Techniques of Model Based Predictive Control (MPC) are increasingly applied in industry because they generally exhibit a good performance and robustness, since the parameters of controller are tuned correctly. This thesis use the Genetic Algorithm (GA) to perform the tuning of parameters of the predictive controller to control mono and multivariable, linear and nonlinear models. The existing technical literature for tuning Predictive Dynamic Matrix Controller (DMC), which use a step response to control systems that are open loop stable will be compared with the tuning by GA. In the event that the process is unstable in open-loop, there is not an analytical method for the tuning. Therefore, it is noted in the literature that the use of MPC in some open-loop unstable systems, linear or not (Such as these to be studied in this thesis) is lacking, because the tuning procedure is based on trial and error and sometimes is impractical. Therefore, this study focuses the application of the MPC tuning by Genetic algorithm for two open-loop unstable processes, which are very important in the Steel Industry. The first is composed by Rolling Mill Stands, where we wish to minimize the variation of strip thickness the last stand due to disturbances that affect the process such as temperature and strip thickness variations in the first stand. In this case we use the linear and multivariable model to develop the Generalized Predictive Controller (GPC) whose parameters are tuned by GA. The second process, unstable in open-loop, is the level of Mold of a Continuous Casting, which has a nonlinear model and is therefore controlled by techniques of nonlinear predictive control using neural networks and Hammerstein model. A comparison is made between these controllers to analyze the stability and robustness when the mold is affected by disturbance of Bulging, Clogging and Argon.
URI: http://repositorio.ufes.br/handle/10/9710
Aparece nas coleções:PPGEE - Teses de doutorado

Arquivos associados a este item:
Arquivo TamanhoFormato 
tese_3871_TeseDoutoradoGustavoMaiadeAlmeida.pdf3.07 MBAdobe PDFVisualizar/Abrir


Os itens no repositório estão protegidos por copyright, com todos os direitos reservados, salvo quando é indicado o contrário.