Mestrado em Informática
URI Permanente para esta coleção
Nível: Mestrado Acadêmico
Ano de início:
Conceito atual na CAPES:
Ato normativo:
Periodicidade de seleção:
Área(s) de concentração:
Url do curso:
Navegar
Navegando Mestrado em Informática por Autor "Almeida, Regina Célia Cerqueira de"
Agora exibindo 1 - 3 de 3
Resultados por página
Opções de Ordenação
- ItemFormulações estabilizadas submalhas aplicadas às equações de Euler(Universidade Federal do Espírito Santo, 2012-08-28) Mattos, Roberta Nunes; Catabriga, Lucia; Santos, Isaac Pinheiro dos; Fernandes, Daniel Thomes; Almeida, Regina Célia Cerqueira deThis work presents an implementation of the finite element method to solve the system of two-dimensional compressible Euler equations in conservation variables, using the Dynamic Diffusion subgrid stabilization method, considering static and transient subgrid scales. This method is based on the multiscale formalism and has been proposed to solve convection-dominant transport problems. A nonlinear dissipative operator acting isotropically in all discretization scales is added to the Galerkin method. We let the subgrid scales very in time, and thus they need to be tracked. Then, we propose a closed-form expression for them at each time step. A second order implicit predictor multicorrector scheme is used for time integration and the linear systems resulting are solved by the GMRES iterative method. We consider a set of classic experiments: normal shock, oblique shock and reflected shock. Numerical experiments shown that the method Diffusion Dynamics - with transient subgrid scales - results in more accurate solutions than the stabilized methods SUPG/CAU e SUPG/YZβ.
- ItemMétodo de estabilização submalha difusão dinâmica aplicado na simulação de escoamentos miscíveis em meios porosos(Universidade Federal do Espírito Santo, 2011-02-04) Werner, Suzi Lara; Catabriga, Lucia; Santos, Isaac Pinheiro dos; Rangel, Maria Cristina; Almeida, Regina Célia Cerqueira deThis work presents a finite element formulation to solve a coupled non-linear system of partial differential equations, composed by an elliptic sub-system for the pressure-velocity and an advective-diffusive transport equation for the concentration for miscible displacements in porous media. The pressure is determined by the classical Galerkin method and it is considered a post-processing technique for the velocity field. The Dynamic Diffusion subgrid stabilization method is used in the concentration equation. This method is based on the multiscale formalism and consist to add in the classical Galerkin formulation enriched with bubbles functions a nonlinear and non parameterized dissipative operator acting isotropically in all discretization scales. The resulting nonlinear system of ordinary differential equations are discretized using the implicit predictor/multicorrector scheme. Numerical simulations of tracer injection processes and miscible displacements with high adverse mobility ratios in two dimensions are reported, and comparisons with the SUPG/CAU stabilized formulation are performed.
- ItemMétodos multiescala para as equações de Euler compressíveis(Universidade Federal do Espírito Santo, 2016-03-31) Sedano, Ramoni Zancanela; Catabriga, Lucia; Almeida, Regina Célia Cerqueira de; Santos, Isaac Pinheiro dos; Gonçalves, Claudine Santos Badueabstract