Física
URI Permanente desta comunidade
Programa de Pós-Graduação em Física
Centro: CCE
Telefone: (27) 4009 2488
URL do programa: http://www.fisica.ufes.br/pos-graduacao/PPGFis
Navegar
Navegando Física por Autor "Alfonso, Jorge Luis Gonzales"
Agora exibindo 1 - 1 de 1
Resultados por página
Opções de Ordenação
- ItemAnálise termobarométrica aplicada à decomposição do oxalato de cálcio hidratado.(Universidade Federal do Espírito Santo, 2017-04-10) Cevolani, Messias Bicalho; Cunha, Alfredo Gonçalves; Oliveira, José Roberto de; Alfonso, Jorge Luis Gonzales; Bueno, Thiago Eduardo PedreiraThis work is concerned with the characterization of the Thermobarometric Analysis technique applied to the decomposition of Calcium Oxalate Monohydrate (CaC2O4.H2O). This decomposition occurs in three steps with three different gaseous products. This is a technique that makes it possible to obtain direct measurements of temperature and pressure simultaneously during the heat treatment process, this was done in constant volume inside a quartz bulb. Consequently, it was possible to identify thermodynamic parameters of the phase transition and verify the energy conservation quantity such as enthalpy, entropy and Gibbs free energy through the pressure and temperature measurements. The samples were decomposed by varying systematically the initial experimental conditions such as mass, heating rate, heat treatment final temperature and initial pressure. The present results allowed the identification and description of several physical phenomena related to the compound decomposition process. It was possible to identify that an increase in pressure displaced the of the first and third steps transition temperature to higher levels. In the second transition step, the increase in pressure caused the transition temperature to move to lower levels. It has been observed a proportional relationship between mass and the pressure for each transition steps. Therefore, the mass variation also displaces the transition temperatures of the three decomposition steps. Analyzing the initial pressures of each experiment, it was possible to identify a small amounts of H2O, such as humidity, in many samples and in the quartz bulb dedicated to the process. The amount of H2O relative to this humidity is exponential in relation to the initial pressure used to close the ampoules. In this work, it also discovered some limitations of the Thermobarometric Analysis technique when applied to the decomposition of CaC2O4.H2O. By this way, the temperature range limited to 800°C was identified as the most adequate for the experiments of this work.