Use este identificador para citar ou linkar para este item: http://repositorio.ufes.br/handle/10/7402
Título: Magnetismo de Ferritas Nanoestruturadas Preparadas por Mecanossíntese e Sol-Gel Protéico.
Autor(es): Segatto, Breno Rodrigues
Orientador: Caetano, Edson Passamani
Data do documento: 21-Jan-2011
Editor: Universidade Federal do Espírito Santo
Resumo: As propriedades magnéticas dos sistemas AFe2O4 (A = Ni, Zn e Co) tipo espinélio processados mecanicamente e as das ferritas NiFe2O4 preparadas pela técnica de sol-gel protéico foram sistematicamente estudadas via espectroscopia Mössbauer do 57Fe sem campo aplicado e via medidas de magnetização, enquanto a estrutura cristalina foi investigada usando difração de raios X. Especificamente, para o NiFe2O4 mecanicamente processado, medidas de espectroscopia Mössbauer do 57Fe com campo também foram realizadas. Para a ferrita nanocristalina mecanicamente processada do tipo espinélio, a estrutura hiperfina estudada pela espectroscopia Mössbauer nos permitiu distinguir duas principais contribuições magnéticas: uma atribuída ao núcleo do grão cristalino (n-G), o qual possui propriedades magnéticas similares às volumétricas (n-AFe2O4) da estrutura tipo espinélio AFe2O4 (A = Ni, Zn e Co) e outra devido a uma região de contorno de grão (CG), a qual apresenta desordens topológicas e químicas (d-AFe2O4). A espectroscopia Mössbauer determinou uma grande fração para a região d-AFe2O4 das ferritas nanocristalinas AFe2O4 moídas por longos tempos (maiores que 80 horas). Da espectroscopia Mössbauer com campo magnético aplicado, foi determinado que os spins do n-NiFe2O4 são inclinados (canted) em relação ao campo magnético aplicado, com isso, uma estrutura do tipo esperomagnética é sugerida para o d-NiFe2O4 com 63% da área do espectro Mössbauer. Os dados Mössbauer para o NiFe2O4 nanocristalino também mostraram que mesmo com campo aplicado de 12 T, a saturação magnética não foi alcançada para as duas fases magnéticas (n-NiFe2O4 e d-NiFe2O4). Em geral, as curvas de histerese para os AFe2O4 (A = Ni, Zn e Co), obtidos no protocolo de resfriamento com campo e registrados para campos de varredura (com campos máximos de 7 T), são deslocadas em ambos os eixos (magnetização e campo magnético), para temperaturas abaixo de 50 K. Também foi demonstrado que a XI configuração da fase tipo vidro de spin da ferrita NiFe2O4 é fortemente modificada pelos consecutivos ciclos de campo, consequentemente a interação magnética NiFe2O4/d-NiFe2O4 é também afetada neste processo. Temos que enfatizar que a ferrita ZnFe2O4 mecanicamente processada tem estrutura do tipo espinélio inversa com uma temperatura de ordem magnética (acima de 40 K) alta em relação a seu equivalente volumétrico (11 K). Por sua vez, mostra-se neste trabalho que as ferritas nanocristalinas de NiFe2O4, preparadas pelo método de sol-gel protéico, não apresentaram deslocamentos na curva de histerese, após o resfriamento com campo magnético e, ao mesmo tempo, as curvas de histerese não estavam saturadas. A aparente ausência do efeito de descolamento horizontal (exchange bias) é explicada pelo fato de que no método de sol-gel os grãos cristalinos são grandes (~19 nm) e, consequentemente, o campo de exchange bias vai a zero, uma vez que o HEB α 1/tFI , onde o parâmetro tFI é a espessura ferrimagnética, assumida ser do tamanho de grão. Comparando os resultados magnéticos obtidos para a ferrita nanocristalina NiFe2O4 preparada pela moagem em altas energias e pelo método sol-gel, pode-se concluir que os deslocamentos nas curvas de histerese são extremamente dependentes da alta anisotropia da fase d-AFe2O4 (A = Ni e Zn). Portanto, os efeitos de deslocamentos nas curvas são devidos ao campo de exchange bias nas interfaces d-AFe2O4/n-AFe2O4 e, também, ao efeito de congelamento de spins causados pelo resfriamento da fase tipo vidro de spin com campo magnético aplicado.
Magnetic properties of nanocrystalline AFe2O4 (A = Ni, Zn and Co) spinel-like mechanically processed and also of the nanocrystalline NiFe2O4 ferrite prepared by sol-gel technique have systematically been studied using temperature dependent from zero-field 57Fe Mössbauer spectrometry and magnetization measurements, while the crystal structures were investigated by X-ray difraction. Specifically, for the NiFe2O4mechanically processed in-field 57Fe Mössbauer spectrometry has also been performed. For the nanocrystalline ferrite mechanically processed with spinel-like, the hyperfine structure studied by Mössbauer spectroscopy allows us to distinguish two main magnetic contributions: one attributed to the crystalline grain core (n-G), which has magnetic properties similar to the bulk AFe2O4 (A = Ni, Zn and Co) spinel-like structure (n-AFe2O4) and the other one due to the disordered grain boundary region (GB), which presents topological and chemical disorder features (d-AFe2O4). Mössbauer spectrometry determines a large fraction for the d-AFe2O4 region of the nanocrystalline AFe2O4 ferrite milled for long times (longer than 80 hours). Under applied magnetic field, from Mössbauer it is determined that the n-NiFe2O4 spins are canted with angle dependent on the applied field magnitude, whereas a speromagnet-like structure is suggested for the d-NiFe2O4 with 63% of the Mossbauer spectra area. Mossbauer data for the nanocrystalline NiFe2O4 also show that even under 12 T no magnetic saturation is observed for the two magnetic phases (n-NiFe2O4 and d-NiFe2O4). In general, hysteresis loops for the AFe2O4 (A = Ni, Zn and Co), obtained in field cooling protocol and recorded for scan field (maximum field of 7 T), are shifted in both field and magnetization axes, for temperatures below about 50 K. It has also been shown that the spin configuration of the spin-glass-like phase of the NiFe2O4 ferrite is strongly modified by the consecutive field cycles, consequently the n-NiFe2O4/d- XIII NiFe2O4 magnetic interaction is also affected in this process. One has to emphasize that the mechanically processed ZnFe2O4 ferrite has an inverse spinel-like structure with a magnetic ordering temperature (above 40 K) higher than that of the equivalent bulk ferrite (11 K). On the other hand, it is shown in this work that the NiFe2O4nanocrysalline ferrite, prepared by sol-gel method, has no hysteresis loop shift effects, after field cooling protocol, and, at the same time, the hysteresis loops do not saturate. The apparent absence of horizontal loop shift effect (exchange bias) is explained by the fact that in the sol-gel method the crystalline grains are big (~19 nm) and consequently the exchange bias field goes to zero due to the fact that the HEBα 1/tFI, where the tFIparameter is the ferrimagnetic thickness assumed to be the grain size. Comparing the magnetic results obtained for the nanocrystalline NiFe2O4 ferrites prepared by high energy milling and sol-gel methods, it can be concluded that the hysteresis loop shifts are extremely dependent on the high magnetic anisotropy of the d-AFe2O4 (A = Ni and Zn) phase. Therefore, the loop shift effects are due the exchange bias field at the d-AFe2O4/n-AFe2O4 interfaces and also from the spin freezing effect caused by cooling the spin-glass-like phase under applied magnetic field.
URI: http://repositorio.ufes.br/handle/10/7402
Aparece nas coleções:PPGFIS - Teses de doutorado

Arquivos associados a este item:
Arquivo Descrição TamanhoFormato 
tese_4577_Tese final Breno Segatto.pdf7.47 MBAdobe PDFVisualizar/Abrir


Os itens no repositório estão protegidos por copyright, com todos os direitos reservados, salvo quando é indicado o contrário.