Tribocorrosão de metais duros em meios ácidos

dc.contributor.advisor-co1Mello, José Daniel Biasoli de
dc.contributor.advisor-co1IDhttps://orcid.org/0000-0001-8912-2132
dc.contributor.advisor-co1Latteshttp://lattes.cnpq.br/1696467778255755
dc.contributor.advisor1Scandian, Cherlio
dc.contributor.advisor1IDhttps://orcid.org/0000-0002-4393-719X
dc.contributor.advisor1Latteshttp://lattes.cnpq.br/8466752738430250
dc.contributor.authorOliveira, Daniela Nunes
dc.contributor.authorIDhttps://orcid.org/0009-0009-2256-9445
dc.contributor.authorLatteshttp://lattes.cnpq.br/4437532644758347
dc.contributor.referee1Strey, Nathan Fantecelle
dc.contributor.referee1IDhttps://orcid.org/0000-0002-2568-116X
dc.contributor.referee1Latteshttp://lattes.cnpq.br/3613706957012460
dc.contributor.referee2Alves, Juliane Ribeiro da Cruz
dc.contributor.referee2IDhttps://orcid.org/0000-0002-5766-6263
dc.contributor.referee2Latteshttp://lattes.cnpq.br/3865682870831139
dc.date.accessioned2025-10-28T22:12:17Z
dc.date.available2025-10-28T22:12:17Z
dc.date.issued2025-08-27
dc.description.abstractHardmetals are composite materials widely used in industrial applications that demand high wear resistance. Among them, WC–Co, composed of tungsten carbide particles embedded in a cobalt matrix, is the most common, being employed in cutting tools and components for the mining and oil industries. Despite their high wear resistance, their service performance can be compromised in corrosive environments, where the interaction between wear and corrosion accelerates degradation, making the study of tribocorrosion essential. Accordingly, this work investigated the tribocorrosion behavior of WC–Co composites with different cobalt contents (9%, 10%, and 16%) and carbide grain sizes (1.2 µm, 1.3 µm, and 2.5 µm) in acidic media, aiming to understand the interaction between sliding wear and corrosion and their effects on material integrity. The composites were characterized by chemical analysis, X-ray diffraction, grain size measurement, hardness, and density. Sliding wear, corrosion, and tribocorrosion tests were performed, with the latter two conducted in H2SO4 solutions at 0.01 N and 1 N. Synthetic hematite spheres were employed as counterbodies, chosen to simulate typical practical conditions, particularly in iron ore beneficiation. Analyses included friction coefficient determination, triboscopy, electrochemical parameters, mass loss, and surface characterization by optical microscopy, SEM, and EDS. In the sliding wear tests, the friction coefficient exhibited stable behavior (0.21–0.33), and wear rates were on the order of 10−4 mm3/m for the samples and 10−6–10−5 mm3/m for the spheres, without significant mechanical damage, such as grain fracture or pullout. In the corrosion tests, selective dissolution of the binder occurred in 0.01 N, with average mass loss around 0.07 mg/min for all samples. In 1 N solution, 09Co12 and 10Co13 showed average mass losses of 0.08 mg/min, whereas 16Co25 exhibited a significantly higher value of 0.17 mg/min, indicating lower corrosion resistance for the sample with the highest cobalt content. During tribocorrosion, the friction coefficient varied with polarization, and the sample with the highest cobalt content again exhibited the highest wear rates (10−2 mm3/m). SEM images revealed selective binder dissolution and the formation of a pseudopassive tungsten oxide layer, with a shallower dissolution depth than in isolated corrosion, suggesting partial sealing by redistributed corrosion products
dc.description.resumoOs metais duros são compósitos amplamente utilizados em aplicações industriais que exigem alta resistência ao desgaste. Entre eles, o WC–Co, formado por carbonetos de tungstênio em matriz de cobalto, é o mais comum, sendo empregado em ferramentas de usinagem e em componentes dos setores de mineração e petróleo. Apesar da elevada resistência ao desgaste, seu desempenho em serviço pode ser comprometido em ambientes corrosivos, onde a interação entre desgaste e corrosão acelera a degradação, tornando o estudo da tribocorrosão essencial. Desse modo, este trabalho investigou o comportamento tribocorrosivo de compósitos WC–Co com diferentes teores de cobalto (9%, 10% e 16%) e tamanhos de grão de carboneto (1,2 µm, 1,3 µm e 2,5 µm) em meios ácidos, visando compreender a interação entre desgaste por deslizamento e corrosão e seus efeitos sobre a integridade do material. Os compósitos foram caracterizados por análise química, difração de raios-X, tamanho de grão, dureza e densidade. Foram realizados ensaios de desgaste por deslizamento em água deionizada, corrosão e tribocorrosão, sendo estes últimos conduzidos em soluções de H2SO4 nas concentrações de 0,01 N e 1 N. Como contracorpo, empregou-se uma esfera de hematita sintética, escolhida por visar reproduzir condições típicas de aplicações práticas, especialmente no beneficiamento de minério de ferro. As análises incluíram determinação do coeficiente de atrito, triboscopia, parâmetros eletroquímicos, perda de massa, e caracterização das superfícies por microscopia óptica, MEV e EDS. Nos ensaios de deslizamento, o coeficiente de atrito apresentou comportamento estável (0,21–0,33) e as taxas de desgaste foram da ordem de 10−4 mm3/m para as amostras e 10−6–10−5 mm3/m para as esferas, sem danos mecânicos relevantes, como fratura ou destacamento de grãos. Na corrosão, verificou-se dissolução seletiva do ligante em 0,01 N, com perdas de massa médias em torno de 0,07 mg/min para todas as amostras. Em 1 N, a 09Co12 e a 10Co13 apresentaram perdas de massa médias de 0,08 mg/min, enquanto a 16Co25 exibiu valor significativamente maior, 0,17 mg/min, indicando menor resistência à corrosão para a amostra com maior teor de cobalto. Durante a tribocorrosão, o coeficiente de atrito variou com a polarização, e novamente a amostra com maior teor de cobalto apresentou as maiores taxas de desgaste (10−2 mm3/m). Imagens de MEV evidenciaram a dissolução seletiva do ligante e a formação de uma camada de óxido de tungstênio pseudopassiva, com profundidade de dissolução menor do que na corrosão isolada, sugerindo selamento parcial pelos produtos de corrosão
dc.description.sponsorshipFundação Espírito-santense de Tecnologia (FEST)
dc.formatText
dc.identifier.urihttp://repositorio.ufes.br/handle/10/20535
dc.languagepor
dc.language.isopt
dc.publisherUniversidade Federal do Espírito Santo
dc.publisher.countryBR
dc.publisher.courseMestrado em Engenharia Mecânica
dc.publisher.departmentCentro Tecnológico
dc.publisher.initialsUFES
dc.publisher.programPrograma de Pós-Graduação em Engenharia Mecânica
dc.rightsopen access
dc.rights.urihttps://creativecommons.org/licenses/by-nc/4.0/
dc.subjectTribocorrosão
dc.subjectWC–Co
dc.subjectH2SO4
dc.subjectDissolução de cobalto
dc.subjectHematita
dc.subjectTribocorrosion
dc.subjectCobalt dissolution
dc.subjectHematite
dc.subject.cnpqEngenharia Mecânica
dc.titleTribocorrosão de metais duros em meios ácidos
dc.typemasterThesis
Arquivos
Pacote Original
Agora exibindo 1 - 1 de 1
Carregando...
Imagem de Miniatura
Nome:
DanielaNunesOliveira-2025-Dissertacao.pdf
Tamanho:
169.43 MB
Formato:
Adobe Portable Document Format
Descrição:
Licença do Pacote
Agora exibindo 1 - 1 de 1
Carregando...
Imagem de Miniatura
Nome:
license.txt
Tamanho:
1.71 KB
Formato:
Item-specific license agreed upon to submission
Descrição: