Métodos de projeção multidimensional
dc.contributor.advisor1 | Carmo, Fabiano Petronetto do | |
dc.contributor.author | Dal Col Júnior, Alcebíades | |
dc.contributor.referee1 | Gonçalves Junior, Etereldes | |
dc.contributor.referee2 | Nonato, Luís Gustavo | |
dc.date.accessioned | 2018-08-01T22:30:13Z | |
dc.date.available | 2018-08-01 | |
dc.date.available | 2018-08-01T22:30:13Z | |
dc.date.issued | 2013-05-10 | |
dc.description.abstract | The problem we are interested in solving comes from a area of knowledge called data visualization. In our studies, groups of objects are analyzed to produce the input data of our problem, each object is represented by attributes, have so a list of attributes for each object. The idea is to represent, through these lists of attributes, objects through points in R 2 so that we can conduct a group of objects. As we said each object is represented by a list of attributes, this may be interpreted as a point of a multidimensional space. For example, if they are considered m valued attributes for all objects can interpret them as points in a space of dimension m, or m-dimensional. But we want to produce a visualization of the data on the computer screen through points in R 2 , it was then performs a process known as multidimensional projection, that is obtaining points in a low dimensional space representing points in a high dimensional space preserving neighborhood relations as much as possible. Various methods of multidimensional projection are found in the literature. In this work, study and implement methods NNP, Force, LSP, PLP and LAMP. These methods deal with the problem in different ways: geometrically; linear systems, in particular, laplacian systems; and mappings related orthogonal. The lists of attributes associated with the groups of objects are called dataset. Two sets of data in this paper present trends grouping known a priori, therefore were used to give credibility to our implementations of the methods. Two other data set are studied and these were not provided with such feature, the methods of multidimensional projection are then used to define trends grouping for these two data sets. | |
dc.description.resumo | O problema que estamos interessados em resolver prov´em de uma ´area do conhecimento denominada visualiza¸c˜ao de dados. Nos nossos estudos, grupos de objetos s˜ao an´alisados para produzir os dados de entrada do nosso problema, cada um dos objetos ´e representado por atributos, temos assim uma lista de atributos para cada objeto. A ideia ´e representar, atrav´es dessas listas de atributos, os objetos atrav´es de pontos em R 2 para que possamos realizar um estudo do grupo de objetos. Como dissemos cada objeto ´e representado por uma lista de atributos, esta pode ser interpretada como um ponto de um espa¸co multidimensional. Por exemplo, se s˜ao considerados m atributos valorados para todos os objetos podemos interpret´a-los como sendo pontos de um espa¸co de dimens˜ao m, ou mdimensional. Mas, queremos produzir uma visualiza¸c˜ao dos dados na tela do computador atrav´es de pontos em R 2 , realiza-se ent˜ao um processo conhecido como proje¸c˜ao multidimensional, que ´e a obten¸c˜ao de pontos em um espa¸co de baixa dimens˜ao que represente pontos de um espa¸co de alta dimens˜ao preservando rela¸c˜oes de vizinha¸ca tanto quanto poss´ıvel. Diversos m´etodos de proje¸c˜ao multidimensional s˜ao encontrados na literatura. Neste trabalho, estudamos e implementamos os m´etodos NNP, Force, LSP, PLP e LAMP. Estes m´etodos abordam o problema de diferentes formas: geometricamente; sistemas lineares, em particular, sistemas laplacianos; e mapeamentos ortogonais afins. As listas de atributos associadas aos grupos de objetos recebem o nome de conjuntos de dados. Dois dos conjuntos de dados abordados neste trabalho apresentam tendˆencias de agrupamento conhecidas a priori, portanto foram utilizados para dar credibilidade as nossas implementa¸c˜oes dos m´etodos. Outros dois conjuntos de dados s˜ao estudados e esses n˜ao eram dotados de tal caracteristica, os m´etodos de proje¸c˜ao multidimensional s˜ao ent˜ao utilizados para definir tendˆencias de agrupamento para esses dois conjuntos de dados. | |
dc.format | Text | |
dc.identifier.uri | http://repositorio.ufes.br/handle/10/7500 | |
dc.language | por | |
dc.publisher | Universidade Federal do Espírito Santo | |
dc.publisher.country | BR | |
dc.publisher.course | Mestrado em Matemática | |
dc.publisher.department | Centro de Ciências Exatas | |
dc.publisher.initials | UFES | |
dc.publisher.program | Programa de Pós-Graduação em Matemática | |
dc.rights | open access | |
dc.subject | Projection | eng |
dc.subject | Matemática aplicada | por |
dc.subject | Visualização de dados | por |
dc.subject | Métodos de projeção multidimensional | por |
dc.subject.cnpq | Matemática | |
dc.subject.udc | 51 | |
dc.title | Métodos de projeção multidimensional | |
dc.type | masterThesis |
Arquivos
Pacote Original
1 - 1 de 1
Carregando...
- Nome:
- tese_6479_Dissertacao final 30-07-13.pdf
- Tamanho:
- 46.96 MB
- Formato:
- Adobe Portable Document Format
- Descrição: