Combining heterogeneous data and deep learning models for skin cancer detection
dc.contributor.advisor1 | Krohling, Renato Antonio | |
dc.contributor.advisor1ID | https://orcid.org/ | |
dc.contributor.advisor1Lattes | http://lattes.cnpq.br/5300435085221378 | |
dc.contributor.author | Pacheco, Andre Georghton Cardoso | |
dc.contributor.authorID | https://orcid.org/ | |
dc.contributor.authorLattes | http://lattes.cnpq.br/ | |
dc.contributor.referee1 | Mota, Vinicius Fernandes Soares | |
dc.contributor.referee1ID | https://orcid.org/ | |
dc.contributor.referee1Lattes | http://lattes.cnpq.br/9305955394665920 | |
dc.contributor.referee2 | Cavalieri, Daniel Cruz | |
dc.contributor.referee2ID | https://orcid.org/ | |
dc.contributor.referee2Lattes | http://lattes.cnpq.br/ | |
dc.contributor.referee3 | Papa, Joao Paulo | |
dc.contributor.referee3ID | https://orcid.org/ | |
dc.contributor.referee3Lattes | http://lattes.cnpq.br/ | |
dc.contributor.referee4 | Santos, Celso Alberto Saibel | |
dc.contributor.referee4ID | https://orcid.org/0000000232875843 | |
dc.contributor.referee4Lattes | http://lattes.cnpq.br/7614206164174151 | |
dc.date.accessioned | 2024-05-30T00:49:10Z | |
dc.date.available | 2024-05-30T00:49:10Z | |
dc.date.issued | 2020-11-12 | |
dc.description.abstract | Currently, Deep Neural Networks (DNN) are the most successful and common methodologies to tackle medical image analysis. Despite the success, applying Deep Learning for these types of problems involves several challenges such as the lack of large training | |
dc.description.resumo | Currently, Deep Neural Networks (DNN) are the most successful and common methodologies to tackle medical image analysis. Despite the success, applying Deep Learning for these types of problems involves several challenges such as the lack of large training | |
dc.description.sponsorship | Fundação Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) | |
dc.format | Text | |
dc.identifier.uri | http://repositorio.ufes.br/handle/10/14433 | |
dc.language | por | |
dc.publisher | Universidade Federal do Espírito Santo | |
dc.publisher.country | BR | |
dc.publisher.course | Doutorado em Ciência da Computação | |
dc.publisher.department | Centro Tecnológico | |
dc.publisher.initials | UFES | |
dc.publisher.program | Programa de Pós-Graduação em Informática | |
dc.rights | open access | |
dc.subject | Palavra-chave | |
dc.subject.br-rjbn | subject.br-rjbn | |
dc.subject.cnpq | Ciência da Computação | |
dc.title | Combining heterogeneous data and deep learning models for skin cancer detection | |
dc.title.alternative | Combining heterogeneous data and deep learning models for skin cancer detection | |
dc.type | doctoralThesis |
Arquivos
Pacote Original
1 - 1 de 1
Carregando...
- Nome:
- AndreGeorghtonCardosoPacheco-2020-tese.pdf
- Tamanho:
- 15.52 MB
- Formato:
- Adobe Portable Document Format
- Descrição: