Mestrado em Matemática
URI Permanente para esta coleção
Nível: Mestrado Acadêmico
Ano de início: 2006
Conceito atual na CAPES: 3
Ato normativo: Homologado pelo CNE ( Port. MEC 609, de 14/03/2019, DOU 18/03/2019)
Periodicidade de seleção: Anual
Área(s) de concentração: Matemática
Url do curso: https://matematica.ufes.br/pt-br/pos-graduacao/PPGMAT/detalhes-do-curso?id=1401
Navegar
Navegando Mestrado em Matemática por Autor "Alves, Magno Branco"
Agora exibindo 1 - 4 de 4
Resultados por página
Opções de Ordenação
- ItemÁlgebra diferencial e equações diferenciais polinomiais(Universidade Federal do Espírito Santo, 2015-01-01) Silva, Flávio da; Bayer, Valmecir Antônio dos Santos; Merlo, Leandro Colau; Alves, Magno BrancoIn this dissertation we study systems of parametric differential polynomial equations. The main result is the determination of an explicit expression for an implicit such equation.
- ItemClassificação de estruturas de Nambu lineares e p-formas singulares(Universidade Federal do Espírito Santo, 2012-08-13) Almeida, Carla Rodrigues; Alves, Magno Branco; Câmara, Leonardo Meireles; Bursztyn, Henrique; Corrêa Júnior, Maurício BarrosThe aim of this work is to study the foliations that arise from Nambu structures and present the relationship between differential forms and some of this structures. More specifically, to make a study of the Poisson geometry and of singular foliations, emphasiz-ing the case of the simplectic foliation that arises from the Poisson structure and then, to present the Nambu geometry, studying the case of the foliations that arise from the this structures of order grater than or equal to three. In this particular case, we shall show how this Nambu structures are related with differential formas and, by this relationship, classify linear Nambu structure through a result of classification of integrable differential p-forms
- ItemSoluções de vórtice das equações de Ginzburg-Landau(Universidade Federal do Espírito Santo, 2014-12-01) Galkina, Olesya; Alves, Magno Branco; Macarini, Leonardo Magalhães; Câmara, Leonardo MeirelesIn this work we study a theorem of C.H. Taubes concerning vortex solution to the Ginzburg-Landau equations, which describe superconductivity. To prove the theorem we need to show the existence of a solution to a non-linear elliptic partial di erential equation of second order. To obtain the existence of solution we study a non-linear functional de ned on an appropriate Sobolev space. We also include two auxiliary chapters concerning complex line bundles and analytical preliminaries.
- ItemTeoria de calibre e geometria via conexões de Cartan-Ehresmann(Universidade Federal do Espírito Santo, 2012-12-07) Santos, Diego Henrique Carvalho dos; Alves, Magno Branco; Câmara, Leonardo Meireles; Macarini, Leonardo Magalhães; Bochi, Jairo da SilvaThe aim of this work is to present how works the correspondence between the gauge theory and connections in ber bundles. More precisely establishing a dictionary between gauge theory of the quantum mechanics of a charged particle under the in‡uence of an electromagnetic eld and the studies of connections in circle bundles and line bundles. Then, we analyzed two objects of studies in physics using the knowledge acquired in the study of the geometry of ber bundles. The Chern classes and the holonomy of a connection will provide a geometrical visualization of, respectively, magnetic monopoles and the Aharonov-Bohm e¤ect