Caracterização geométrica do espaço moduli de conexões ASD do fibrado de Hopf quatérnio
dc.contributor.advisor1 | Câmara, Leonardo Meireles | |
dc.contributor.author | Maroja, Aaron Aragon | |
dc.contributor.referee1 | Bursztyn, Henrique | |
dc.contributor.referee2 | Batoréo, Marta Jakubowicz | |
dc.date.accessioned | 2018-08-01T22:00:14Z | |
dc.date.available | 2018-08-01 | |
dc.date.available | 2018-08-01T22:00:14Z | |
dc.date.issued | 2017-03-06 | |
dc.description.abstract | In the early 80’s, C.C. Taubes and K. Uhlenbeck provided the analytical foundations so that the solutions of the Yang-Mills equations, called instantons, would have a geometrical use, yet to be found in the same period. Simon Donaldson has built then a theory based on certain aspects of these solutions over 4-dimensional, oriented, closed, differentiable manifolds. In this context, one can isolate a class of connections, called anti-self-dual, that necessarily sastify the Yang-Mills equation. The collection of all such, modulo a natural equivalence relation, namely gauge equivalence, is called the moduli space M of the bundle and its study has led to astonishing insights into the structure of smooth 4- manifolds. This work is set to study in detail a particular example of Donaldson’s Theory on the Hopf bundle over the 4-dimensional manifold ?? 4 . We arrive at the BPST instantons of such bundle via the Cartan canonical 1-form on ????(2). Once these are in hand, we use the conformal invariance of anti-self-dual equations to write down a 5-parameter family of such connections. By making use of a theorem of Atiyah, Hitchin and Singer, we assert that every element of the moduli space M is uniquely represented by a connection in this family. From this we obtain a concrete realization of M as the open unit ball in R 5 . In particular, M is a 5-dimensional manifold with a natural compactification whose boundary is a copy of the base space ?? 4 . | |
dc.description.resumo | No ínício dos anos 80, C.H. Taubes e K. Uhlenbeck apresentaram o fundamento analítico para as soluções das Equações de Yang-Mills, chamadas instantons, de modo a tornaremse um objeto geométrico de grande significância nesta época. A partir deste fundamento, Simon Donaldson pôde construir uma teoria em topologia sobre variedades fechadas, orientáveis, quadridimensionais a partir da variação da métrica, assim como na Teoria de Hodge, a fim de obter resultados que dependessem apenas da variedade a ser estudada. Neste caso, pode-se obter classes de conexões, chamadas anti-auto-duais, que necessariamente satisfazem as Equações de Yang-Mills. A coleção de todas estas conexões módulo uma relação de equivalência, chamada equivalência de calibre, é chamado o espaço moduli ℳ do fibrado e seu estudo tem proporciando muitas descobertas da estrutura de variedades quadridimensionais. É feito neste trabalho, o estudo detalhado de um exemplo particular da Teoria de Donaldson no caso do fibrado de Hopf quatérnio. Obtém-se as conexões BPST instantons deste fibrado através da 1-forma de Cartan em 𝑆𝑝(2) e, uma vez tendo-as em mãos, escreve-se uma família de cinco parâmetros destas conexões. Através do Teorema de Atiyah, Hitchin e Singer, obtém-se que todo elemento do espaço moduli ℳ é unicamente representado por uma conexão nesta família. A partir disso, obtém-se uma realização concreta de ℳ como uma bola unitária aberta em R 5 . Em particular, ℳ é uma variedade de dimensão 5 com uma compactificação natural, a saber, a bola fechada unitária em R 5 cuja fronteira é uma cópia do espaço em estudo 𝑆 4 . | |
dc.format | Text | |
dc.identifier.uri | http://repositorio.ufes.br/handle/10/7409 | |
dc.language | por | |
dc.publisher | Universidade Federal do Espírito Santo | |
dc.publisher.country | BR | |
dc.publisher.course | Mestrado em Matemática | |
dc.publisher.department | Centro de Ciências Exatas | |
dc.publisher.initials | UFES | |
dc.publisher.program | Programa de Pós-Graduação em Matemática | |
dc.rights | open access | |
dc.subject | Moduli space | eng |
dc.subject | Espaço moduli | por |
dc.subject | Hopf bundle | eng |
dc.subject | Fibrado de hopf | por |
dc.subject | Yang-Mills theory | eng |
dc.subject | Teoria de Yang-Mills | por |
dc.subject.br-rjbn | Geometria diferencial | |
dc.subject.br-rjbn | Fibrados (Matemática) | |
dc.subject.br-rjbn | Instantons | |
dc.subject.cnpq | Matemática | |
dc.subject.udc | 51 | |
dc.title | Caracterização geométrica do espaço moduli de conexões ASD do fibrado de Hopf quatérnio | |
dc.type | masterThesis |
Arquivos
Pacote Original
1 - 1 de 1
Carregando...
- Nome:
- tese_10700_Dissertação - Aaron Aragon Maroja.pdf
- Tamanho:
- 6.13 MB
- Formato:
- Adobe Portable Document Format
- Descrição: