Uso de dados de LiDAR aerotransportado e terrestre móvel no inventário quantitativo de árvores urbanas
| dc.contributor.advisor1 | Mendonça, Adriano Ribeiro de | |
| dc.contributor.advisor1ID | https://orcid.org/0000-0003-3307-8579 | |
| dc.contributor.advisor1Lattes | http://lattes.cnpq.br/9110967421921927 | |
| dc.contributor.author | Souza, Emerson Eduardo Oliveira de | |
| dc.contributor.authorID | https://orcid.org/0000-0003-1639-5353 | |
| dc.contributor.authorLattes | http://lattes.cnpq.br/8624018008470565 | |
| dc.contributor.referee1 | Moura, Cristiane Coelho de | |
| dc.contributor.referee1ID | https://orcid.org/0000-0001-6743-8638 | |
| dc.contributor.referee1Lattes | http://lattes.cnpq.br/8485099797100386 | |
| dc.contributor.referee2 | Silva, Gilson Fernandes da | |
| dc.contributor.referee2ID | https://orcid.org/0000-0001-7853-6284 | |
| dc.contributor.referee2Lattes | http://lattes.cnpq.br/8643263800313625 | |
| dc.contributor.referee3 | Almeida, André Quintão de | |
| dc.contributor.referee3ID | https://orcid.org/0000-0002-5063-1762 | |
| dc.contributor.referee3Lattes | http://lattes.cnpq.br/5929672339693607 | |
| dc.date.accessioned | 2025-11-17T21:14:46Z | |
| dc.date.available | 2025-11-17T21:14:46Z | |
| dc.date.issued | 2025-07-30 | |
| dc.description.abstract | Urban tree planting plays an essential role in providing ecosystem services such as thermal regulation, surface runoff control, and air quality improvement. However, proper management of these trees depends on accurate, up-to-date, and efficient inventories. Given the operational limitations of conventional methods, this study evaluated the use of airborne LIDAR (ALS) and terrestrial. LIDAR (TLS) data for tree detection and the estimation of biometric variables in an urban environment. The main objective was to analyze the accuracy of these technologies in estimating variables such as total height (H), diameter at breast height (DBH), and crown diameter (de) along an urban street in the municipality of Jerónimo Monteiro, ES, Brazil. The methodology involved acquiring data with LIDAR sensors mounted on a remotely piloted aircraft (RPA) and on mobile terrestrial scanning equipment, in addition to traditional field inventory, Point clouds were pre-processed, classified, and normalized. Subsequently, digital terrain models (DTMs) were generated, individual trees were detected and segmented (ITD), structural metrics were extracted, and multiple linear regression models were fitted to estimate the variables of interest. The results showed that ALS presented higher accuracy in total height (H) estimation, with an adjusted Rª of 0.95 and RMSE of 6.69%. On the other hand, TLS performed better in the estimation of DBH (adjusted. R³ of 0.47 and RMSE of 26.21%) and cd (adjusted R³ of 0.55 and RMSE of 19.67%), providing better detail of the trees' lateral structure. The best-performing detection algorithm was the Local Maximum Filter (LMF) with a variable linear window, especially when applied directly to the TLS point cloud. Statistical modeling using point cloud-derived variables showed robust performance, particularly with metrics such as zq95, zkurt, and ikurt. It is concluded that both ALS and TLS are effective tools for urban forest inventory, with complementary potential. The combination of ALS's spatial coverage and TLS's structural detail can optimize urban planning and tree management, contributing to more efficient strategies for monitoring and managing urban green areas. | |
| dc.description.resumo | A arborização urbana desempenha um papel essencial na promoção de serviços ecossistêmicos, como regulação térmica, controle de escoamento superficial e melhoria da qualidade do ar. No entanto, o manejo adequado dessas árvores depende de Inventários florestais precisos, atualizados e eficientes, Diante das limitações operacionais dos métodos convencionais, este trabalho avallou o uso de dados LIDAR aerotransportado (ALS) e terrestre (TLS) para a detecção de árvores e estimação de variáveis biométricas em ambiente urbano. O objetivo principal fol analisar a acurácia dessas tecnologias na estimativa de variáveis como altura total (H), diametro à altura do peito (D) e diametro de copa (dc) em uma via urbana do município de Jeronimo Monteiro, ES. Os dados foram coletados com sensores LiDAR embarcados em uma aeronave remotamente pilotada (RPA) e com um equipamento de varredura terrestre móvel, além de inventário tradicional em campo. As nuvens de pontos foram pré-processadas, classificadas e normalizadas. Em seguida, foram gerados modelos digitais do terreno (MDT), detectadas e segmentadas árvores individuais (ITD), extraídas métricas estruturais e ajustados modelos de regressão linear múltipla para estimar as das variáveis de interesse. O algoritmo de detecção com melhor desempenho foi o Local Maximum Filter (LMF) com janela variável linear, especialmente quando aplicado diretamente à nuvem de pontos do TLS. Os resultados mostraram que o ALS apresentou maior acurácia para estimar H, com R² ajustado de 0,95 e RMSE de 6,69%, Por outro lado, o TLS destacou-se nas estimativas de D (R² ajustado de 0,47 e RMSE de 26,21%) e de (R² ajustado de 0,55 e RMSE de 19,67%), apresentando melhor detalhamento da estrutura lateral das árvores. As modelagens estatísticas com variáveis derivadas da nuvem de pontos revelaram desempenho robusto, especialmente com métricas como zq95, zkurt e ikurt. Condui-se que tanto o ALS quanto o TLS são ferramentas eficazes para o inventário florestal urbano, com potencial complementar. A combinação entre alcance espacial do ALS e a riqueza estrutural do TLS pode otimizar o planejamento urbano e a gestão da arborização, contribuindo para estratégias mais eficientes de monitoramento e manejo em áreas urbanas. | |
| dc.description.sponsorship | Fundação de Amparo à Pesquisa e Inovação do Espírito Santo (FAPES) | |
| dc.format | Text | |
| dc.identifier.uri | http://repositorio.ufes.br/handle/10/20628 | |
| dc.language | por | |
| dc.publisher | Universidade Federal do Espírito Santo | |
| dc.publisher.country | BR | |
| dc.publisher.course | Mestrado em Ciências Florestais | |
| dc.publisher.department | Centro de Ciências Agrárias e Engenharias | |
| dc.publisher.initials | UFES | |
| dc.publisher.program | Programa de Pós-Graduação em Ciências Florestais | |
| dc.rights | open access | |
| dc.subject | Arborização urbana | |
| dc.subject | Inventário florestal aprimorado | |
| dc.subject | Sensoriamento remoto | |
| dc.subject.cnpq | Recursos Florestais e Engenharia Florestal | |
| dc.title | Uso de dados de LiDAR aerotransportado e terrestre móvel no inventário quantitativo de árvores urbanas | |
| dc.type | masterThesis |
Arquivos
Pacote Original
1 - 1 de 1
Carregando...
- Nome:
- EmersonEduardoOliveiradeSouza-2025-Dissertacao.pdf
- Tamanho:
- 13.49 MB
- Formato:
- Adobe Portable Document Format
- Descrição:
Licença do Pacote
1 - 1 de 1
Carregando...
- Nome:
- license.txt
- Tamanho:
- 1.71 KB
- Formato:
- Item-specific license agreed upon to submission
- Descrição: