Uso de dados de LiDAR aerotransportado e terrestre móvel no inventário quantitativo de árvores urbanas

dc.contributor.advisor1Mendonça, Adriano Ribeiro de
dc.contributor.advisor1IDhttps://orcid.org/0000-0003-3307-8579
dc.contributor.advisor1Latteshttp://lattes.cnpq.br/9110967421921927
dc.contributor.authorSouza, Emerson Eduardo Oliveira de
dc.contributor.authorIDhttps://orcid.org/0000-0003-1639-5353
dc.contributor.authorLatteshttp://lattes.cnpq.br/8624018008470565
dc.contributor.referee1Moura, Cristiane Coelho de
dc.contributor.referee1IDhttps://orcid.org/0000-0001-6743-8638
dc.contributor.referee1Latteshttp://lattes.cnpq.br/8485099797100386
dc.contributor.referee2Silva, Gilson Fernandes da
dc.contributor.referee2IDhttps://orcid.org/0000-0001-7853-6284
dc.contributor.referee2Latteshttp://lattes.cnpq.br/8643263800313625
dc.contributor.referee3Almeida, André Quintão de
dc.contributor.referee3IDhttps://orcid.org/0000-0002-5063-1762
dc.contributor.referee3Latteshttp://lattes.cnpq.br/5929672339693607
dc.date.accessioned2025-11-17T21:14:46Z
dc.date.available2025-11-17T21:14:46Z
dc.date.issued2025-07-30
dc.description.abstractUrban tree planting plays an essential role in providing ecosystem services such as thermal regulation, surface runoff control, and air quality improvement. However, proper management of these trees depends on accurate, up-to-date, and efficient inventories. Given the operational limitations of conventional methods, this study evaluated the use of airborne LIDAR (ALS) and terrestrial. LIDAR (TLS) data for tree detection and the estimation of biometric variables in an urban environment. The main objective was to analyze the accuracy of these technologies in estimating variables such as total height (H), diameter at breast height (DBH), and crown diameter (de) along an urban street in the municipality of Jerónimo Monteiro, ES, Brazil. The methodology involved acquiring data with LIDAR sensors mounted on a remotely piloted aircraft (RPA) and on mobile terrestrial scanning equipment, in addition to traditional field inventory, Point clouds were pre-processed, classified, and normalized. Subsequently, digital terrain models (DTMs) were generated, individual trees were detected and segmented (ITD), structural metrics were extracted, and multiple linear regression models were fitted to estimate the variables of interest. The results showed that ALS presented higher accuracy in total height (H) estimation, with an adjusted Rª of 0.95 and RMSE of 6.69%. On the other hand, TLS performed better in the estimation of DBH (adjusted. R³ of 0.47 and RMSE of 26.21%) and cd (adjusted R³ of 0.55 and RMSE of 19.67%), providing better detail of the trees' lateral structure. The best-performing detection algorithm was the Local Maximum Filter (LMF) with a variable linear window, especially when applied directly to the TLS point cloud. Statistical modeling using point cloud-derived variables showed robust performance, particularly with metrics such as zq95, zkurt, and ikurt. It is concluded that both ALS and TLS are effective tools for urban forest inventory, with complementary potential. The combination of ALS's spatial coverage and TLS's structural detail can optimize urban planning and tree management, contributing to more efficient strategies for monitoring and managing urban green areas.
dc.description.resumoA arborização urbana desempenha um papel essencial na promoção de serviços ecossistêmicos, como regulação térmica, controle de escoamento superficial e melhoria da qualidade do ar. No entanto, o manejo adequado dessas árvores depende de Inventários florestais precisos, atualizados e eficientes, Diante das limitações operacionais dos métodos convencionais, este trabalho avallou o uso de dados LIDAR aerotransportado (ALS) e terrestre (TLS) para a detecção de árvores e estimação de variáveis biométricas em ambiente urbano. O objetivo principal fol analisar a acurácia dessas tecnologias na estimativa de variáveis como altura total (H), diametro à altura do peito (D) e diametro de copa (dc) em uma via urbana do município de Jeronimo Monteiro, ES. Os dados foram coletados com sensores LiDAR embarcados em uma aeronave remotamente pilotada (RPA) e com um equipamento de varredura terrestre móvel, além de inventário tradicional em campo. As nuvens de pontos foram pré-processadas, classificadas e normalizadas. Em seguida, foram gerados modelos digitais do terreno (MDT), detectadas e segmentadas árvores individuais (ITD), extraídas métricas estruturais e ajustados modelos de regressão linear múltipla para estimar as das variáveis de interesse. O algoritmo de detecção com melhor desempenho foi o Local Maximum Filter (LMF) com janela variável linear, especialmente quando aplicado diretamente à nuvem de pontos do TLS. Os resultados mostraram que o ALS apresentou maior acurácia para estimar H, com R² ajustado de 0,95 e RMSE de 6,69%, Por outro lado, o TLS destacou-se nas estimativas de D (R² ajustado de 0,47 e RMSE de 26,21%) e de (R² ajustado de 0,55 e RMSE de 19,67%), apresentando melhor detalhamento da estrutura lateral das árvores. As modelagens estatísticas com variáveis derivadas da nuvem de pontos revelaram desempenho robusto, especialmente com métricas como zq95, zkurt e ikurt. Condui-se que tanto o ALS quanto o TLS são ferramentas eficazes para o inventário florestal urbano, com potencial complementar. A combinação entre alcance espacial do ALS e a riqueza estrutural do TLS pode otimizar o planejamento urbano e a gestão da arborização, contribuindo para estratégias mais eficientes de monitoramento e manejo em áreas urbanas.
dc.description.sponsorshipFundação de Amparo à Pesquisa e Inovação do Espírito Santo (FAPES)
dc.formatText
dc.identifier.urihttp://repositorio.ufes.br/handle/10/20628
dc.languagepor
dc.publisherUniversidade Federal do Espírito Santo
dc.publisher.countryBR
dc.publisher.courseMestrado em Ciências Florestais
dc.publisher.departmentCentro de Ciências Agrárias e Engenharias
dc.publisher.initialsUFES
dc.publisher.programPrograma de Pós-Graduação em Ciências Florestais
dc.rightsopen access
dc.subjectArborização urbana
dc.subjectInventário florestal aprimorado
dc.subjectSensoriamento remoto
dc.subject.cnpqRecursos Florestais e Engenharia Florestal
dc.titleUso de dados de LiDAR aerotransportado e terrestre móvel no inventário quantitativo de árvores urbanas
dc.typemasterThesis
Arquivos
Pacote Original
Agora exibindo 1 - 1 de 1
Carregando...
Imagem de Miniatura
Nome:
EmersonEduardoOliveiradeSouza-2025-Dissertacao.pdf
Tamanho:
13.49 MB
Formato:
Adobe Portable Document Format
Descrição:
Licença do Pacote
Agora exibindo 1 - 1 de 1
Carregando...
Imagem de Miniatura
Nome:
license.txt
Tamanho:
1.71 KB
Formato:
Item-specific license agreed upon to submission
Descrição: