Modelagem do problema de roteamento no planejamento do inventário florestal

Nenhuma Miniatura disponível
Data
2017-09-11
Autores
Barros Júnior, Antônio Almeida
Título da Revista
ISSN da Revista
Título de Volume
Editor
Universidade Federal do Espírito Santo
Resumo
Among the various activities related to timber production, the forest inventory activity stands out for promoting the collection of data for analysis and decision making. In forest projects with large planting areas, the number of installed plots becomes very large, requiring prior planning and inventory activities programming. The planning consists of defining which plots will be inventoried in what period of time. In this context, this thesis presents a new approach to represent and obtain solutions for the Vehicle Routing Problem in the planning of forest inventories (PRV-IF). An adapted model of the Periodic Vehicle Routing Problem with Time Windows (PRPVJT) was proposed for the problem. The exact brach-and-cut method using the CPLEX solver and the Iterated Local Search (ILS) and Simulated Annealing (SA) metaheuristics were used as solution methods. The performance of the applied methods was analyzed by creating instances for the PRV-IF with different sizes. The results show that the methods were satisfactory in solving the problem, especially for the larger instances. The Simulated Annealing metaheuristic obtained the best results when compared to the other methods.
Descrição
Palavras-chave
Programação linear , Problema de roteamento de veículos , Forest inventory , Heurística , Periodic vehicle routing problem with time window , Inventário florestal , Linear programming , Modelo de roteamento periódico de veículos _x000D_ com janela de tempo
Citação
BARROS JUNIOR, Antônio Almeida. Modelagem do problema de roteamento no planejamento do inventário florestal. 2017. 87 f. Tese (Doutorado em Ciências Florestais) - Programa de Pós-Graduação em Ciências Florestais, Universidade Federal do Espírito Santo, Centro de Ciências Agrárias e Engenharias, Jerônimo Monteiro, 2017.