Otimização de estruturas treliçadas geometricamente não lineares submetidas a carregamento dinâmico

Nenhuma Miniatura disponível
Data
2019-03-29
Autores
Martinelli, Larissa Bastos
Título da Revista
ISSN da Revista
Título de Volume
Editor
Universidade Federal do Espírito Santo
Resumo
This study addresses the optimization of lattice structures with geometrically nonlinear behavior under dynamic loading. The formulated optimization problem aims to determine the cross-sectional area of the bars which minimizes the total mass of the structure, imposing constraints on nodal displacements and stresses. In order to solve this optimization problem, it was developed a computational program on MATLAB®, using the Interior Point method and the Sequential Quadratic Programming method, the algorithms of which are available on Optimization Toolbox™. It was included routines for grouping the bars and to convert the optimal solution obtained using continuous design variables in commercial values of structural hollow-sections. The space truss nonlinear finite element is described by an updated Lagrangian formulation. The implemented geometric nonlinear dynamic analysis procedure combines Newmark’s method with Newton-Raphson type iterations, being validated by comparison with solutions available in the literature and with solutions obtained using ANSYS® software. Examples of plane and space trusses under different dynamic loading are solved using the developed computational program. The results show that: the Sequential Quadratic Programming method is the most efficient to solve the studied optimization problem, consideration of structural damping can lead to a significant reduction in the total mass, the use of the conversion procedure for commercial sections provides solutions in favor of security and the grouping of bars generates a satisfactory duration for the optimization process.
Descrição
Palavras-chave
Structural optimization , Geometric nonlinearity , Dynamic analysis , Trusses , Structural hollow-sections , Steel structures , Otimização estrutural , Não linearidade geométrica , Análise dinâmica , Treliças , Estruturas de aço , Perfil tubular
Citação
MARTINLLI, Larissa Bastos. Otimização de estruturas treliçadas geometricamente não lineares submetidas a carregamento dinâmico. 2019. Dissertação (Mestrado em Engenharia Civil) - Universidade Federal do Espírito Santo, Centro Tecnológico, Vitória, 2019.